harmonic injection
Recently Published Documents


TOTAL DOCUMENTS

390
(FIVE YEARS 114)

H-INDEX

23
(FIVE YEARS 4)

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2267
Author(s):  
Kyeong-Rok Moon ◽  
Dong-Myung Lee

In this paper, the rotor position estimation performance of the sensorless scheme for permanent magnet synchronous motors (PMSMs) implemented through the injection of high-frequency square-wave voltage according to the frequency of the square-wave voltage is presented through HILS (Hardware In the Loop Simulation) experiments. An inverter using an IGBT device usually has a switching frequency of around 15 kHz. On the other hand, GaN devices that can be switched on and off at frequencies higher than 100 kHz have been recently developed, and research is being actively conducted to apply GaNs to a variable speed system. The purpose of this study is to conduct HILS experiments to analysis the rotor position estimation ability of the sensorless technique in cases where a high switching frequency was applied, such as GaN devices, with that of a system having a usual switching frequency, such as IGBT. In the HILS system used in this study, an inverter and motor model implemented with Simulink are located in a real-time simulator. A sensorless motor control method was implemented with an FPGA control board, which includes a PWM interrupt service routine of 100 kHz frequency and a harmonic injection and position detection algorithm. The HILS experiments show rotor position detection errors according to the various frequency of the harmonic voltage injected for estimating the rotor position with a PWM frequency of 100 kHz cases. According to the experimental results, good position estimation was possible not only when the harmonic of 10 kHz corresponding to 1/10 of the PWM frequency was injected, but also when the harmonic of 1 kHz corresponding to 1/100 of the PWM frequency was injected. The experiments suggest that position estimation errors decrease as the frequency of the harmonic voltage increases, and, based on the foregoing, it is thought that the application of a GaN device capable of realizing a high switching frequency in a variable speed drive system can be another advantage.


Author(s):  
Farah T. Noori ◽  
Turki K. Hassan

<span lang="EN-US">This paper presents four interleaved flyback DC-DC converters. Each flyback converter contains a separate maximum power point tracker (MPPT). The MPP tracker is used to collect the maximum power value from photovoltaic panel by using (P&amp;O) algorithm with an output of reference current. In latest years, the active third-harmonic injection circuit have received much interest, this technique contributed to getting a better quality of injection current into the utility grid and control the reactive power. For converting direct current to three-phase sinusoidal currents, a line-commutated current source inverter type (CSI) with filter is used. The developed micro-inverter of (1000 W) offers an expanded range of reactive power control with balanced three-phase output power and good efficiency 95.07%. The effectiveness of the suggested system is clarified through the MATLAB program simulation. The system proposed in this paper has proven its effectiveness in obtaining reactive power control, nearly sinusoidal three-phase output currents and it is compared with the traditional PV micro-inverter system. The comparison shows that the PV micro-inverter is best in more specification than the traditional PV system such as efficiency and total harmonic distortion (THD) and the system losses.</span>


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2507
Author(s):  
Hsiu-Chen Chang ◽  
Patrick Roblin ◽  
Yunsik Hahn ◽  
Jose I. Martinez-Lopez ◽  
Chenyu Liang

The second-harmonic input impedance plays a critical role on the performance of GaN power amplifiers. In a recent paper, a drain efficiency enhancement for a continuous-mode power amplifiers was reported to be achieved using active broadband second-harmonic injection at the PA input. In this paper, the strategy for selecting the second-harmonic input impedance and the necessity for using active injection in such broadband PAs are discussed in detail. Additionally, the methodology for designing an embedded broadband diplexer in the input matching network is reported. Finally, the importance of the phase of the second-harmonic signal injected is demonstrated for both CW and modulated signals using both simulation and measurement, respectively. The effectiveness of the CW and modulated active second-harmonic injection methodology presented here are validated by previously reported measurements that demonstrated an average drain efficiency improvement of 9.4% from 1.3 to 2.4 GHz for CW signals and of 9.7% at 2 GHz for a frequency-modulated 30 MHz chirp radar signal.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1721
Author(s):  
Syed Sabir Hussain Bukhari ◽  
Fareed Hussain Mangi ◽  
Irfan Sami ◽  
Qasim Ali ◽  
Jong-Suk Ro

This paper discusses the design and analysis of a high-harmonic injection-based field excitation scheme for the brushless operation of wound field synchronous machines (WFSMs) in order to achieve a higher efficiency. The proposed scheme involves two inverters. One of these inverters provides the three-phase fundamental-harmonic current to the armature winding, whereas the second inverter injects the single-phase high-harmonic i.e., 6th harmonic current in this case, to the neutral-point of the Y-connected armature winding. The injection of the high-harmonic current in the armature winding develops the high-harmonic magnetomotive force (MMF) in the air gap of the machine beside the fundamental. The high-harmonic MMF induces the harmonic current in the excitation winding of the rotor, whereas the fundamental MMF develops the main armature field. The harmonic current is rectified to inject the direct current (DC) into the main rotor field winding. The main armature and rotor fields, when interacting with each other, produce torque. Finite element analysis (FEA) is carried out in order to develop a 4-pole 24-slot machine and investigate it using a 6th harmonic current injection for the rotor field excitation to both attain a brushless operation and analyze its electromagnetic performance. Later on, the performance of the proposed topology is compared with the typical brushless WFSM topology employing the 3rd harmonic current injection-based field excitation scheme.


Author(s):  
Xia Aiming ◽  
Chen Yang ◽  
Fu Bin ◽  
Wu Fengyu ◽  
Zhang Yuchen

Sign in / Sign up

Export Citation Format

Share Document