Process Development, Design and Analysis of Microalgal Biodiesel Production Aided by Microwave and Ultrasonication

Author(s):  
Dipesh S. Patle ◽  
Savyasachi Shrikhande ◽  
Gade Pandu Rangaiah
2020 ◽  
Vol 35 (2) ◽  
pp. 173-188
Author(s):  
Samakshi Verma ◽  
Arindam Kuila

AbstractAccording to the report of the renewable energy policy network for the 21st century published in 2014, biodiesel and bioethanol are the most used biofuels and are responsible for transportation worldwide. Biodiesel specially has shown an increase in production globally by 15 times by volume from 2002 to 2012. Promising feedstock of biodiesel are cyanobacteria and microalgae as they possess a shorter cultivation time (4 fold lesser) and high oil content (10 fold higher) than corn, jatropha and soybean (conventional oil-producing territorial plants). Various valuable natural chemicals are also produced from these organisms including food supplements such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), pigments, and vitamins. Additionally, cellular components of microalgae and cyanobacteria are connected with therapeutic characteristics such as anti-inflammatory, antioxidant, antiviral and immune stimulating. Commercialization of algal biodiesel (or other products) can be achieved by isolating and identifying the high-yielding strains that possess a faster growth rate. Indigenous strains can be genetically engineered into high-yielding transgenic strains. The present article discusses about the use of nanotechnology and genetic engineering approach for improved lipid accumulation in microalgae for biodiesel production.


2012 ◽  
pp. 709-744
Author(s):  
Razif Harun ◽  
Mark Doyle ◽  
Rajprathab Gopiraj ◽  
Michael Davidson ◽  
Gareth M. Forde ◽  
...  

Author(s):  
Yue Shi ◽  

Excessive use of fossil fuels has led to severe energy calamity and environmental pollution in the world. The effect can be mitigated by shifting from conventional fuels to biofuel which may become a replacement of fuels such as diesel, gasoline and Compressed Natural Gas (CNG). Algal biomass is considered as one of the most promising and emerging sources of biodiesel production. Technologies related to biodiesel production using algal biomass have gained initial foothold in Pakistan but have failed miserably in gaining necessary momentum due to lack of government support to technology. The aim of this study is to indicate the progress and future perspectives of biodiesel production in Pakistan through microalgae. The study indicates that a microalgae is one of the best candidates for biodiesel production in addition to other energy crops like Jatropha, Castor and Pongamia Pinnata. There is a need to expeditiously develop biodiesel technology using local resources to lower the burden of imports on country’s economy while also bringing security of energy resources.


2021 ◽  
Author(s):  
Kang Wang ◽  
Yulin Cui ◽  
Chunxiao Meng ◽  
Zhengquan Gao ◽  
Song Qin

Abstract Background: Amphora coffeaeformis, a unicellular diatom, can accumulate large amounts of lipids under nitrogen (N) limitation, because of which it can act as a promising raw material for biodiesel production. However, the molecular mechanism underlying lipid accumulation in A. coffeaeformis remains unknown. Results: In this study, we investigated the mechanism underlying lipid accumulation under N deprivation conditions in A. coffeaeformis using RNA-seq. The results showed that the total lipid (TL) content of A. coffeaeformis in normal f/2 medium was 28.22% (TL/DW), which increased to 44.05% after 5 days of N deprivation, while the neutral lipid triacylglycerol (TAG) content increased from 10.41% (TAG/DW) to 25.21%. The transcriptional profile showed that 591 genes were up-regulated, with false discovery rate cutoff of 0.1%, and 1,021 genes were down-regulated, indicating that N deprivation induced wide-ranging reprogramming of regulation, and that most physiological activities were repressed. In addition, ribosome biogenesis, carbon fixation, and photosynthesis in A. coffeaeformis were considerably affected by N deprivation. Conclusions: In summary, the findings initially clarified the molecular mechanism of TAG accumulation and revealed the key genes involved in lipid metabolism in A. coffeaeformis, which will be useful in designing strategies for improving microalgal biodiesel production.


2017 ◽  
Author(s):  
◽  
Poonam Singh

Microalgae are considered to be a potential feedstock for biodiesel production. However, the main concern with regard to the large scale microalgal biodiesel production process is its competence and economic viability. The commercial realization of microalgal biodiesel production requires substantial impetus towards development of efficient strategies to improve lipid yields upstream. Nitrogen (N) and phosphorus (P) stress during cultivation are the widely used lipid accumulation strategies for microalgae. However, these individual nutrient stress strategies are associated with compromised biomass productivity which hampers overall lipid productivity. Lipid enhancement strategies based on light, temperature and CO2 are associated with technological barriers for scale up and incur additional cost. Thus, the main aim of this study was to develop an integrated, easily applicable and scalable lipid enhancement strategy based on nutrients and metals such as N, P, iron (Fe), magnesium (Mg), calcium (Ca) and EDTA stress for selected indigenous microalgal strains. The effect of metal concentrations individually and in combination on microalgal lipids and biomass production is a scarcely exploited area. In this study, a novel approach involving individual as well as combined metals and EDTA stress under N and P limited conditions for lipid enhancement in microalgae was investigated. Microalgal growth physiology, photosynthetic performance, biochemical composition (lipid, carbohydrate and protein) and expression of selected key genes involved in photosynthesis (rbcL) and fatty acid biosynthesis (accD) were studied both under selected individual and combined stress conditions. Out of seven microalgal isolates obtained during the initial isolation and screening process, two strains were selected for lipid enhancement study based on their growth rates, biomass yields, lipid content and lipid productivities. The strains were later identified as Acutodesmus obliquus and Chlorella sorokiniana based on both morphological characteristics and phylogenetical analysis. The selected strains were thereafter subjected to different cultivation conditions involving varying metal, EDTA and nutrient stress conditions. A significant increase in lipid productivity was observed when the concentrations of Fe, Mg and EDTA were increased and Ca was decreased to degree in the N and P stress BG11 medium. For A. obliquus, a highest lipid productivity of 80.23 mgL-1d-1 was achieved with the developed strategy under limited N (750 mg L-1) condition which was 2.18 fold higher than BG11 medium and 1.89 fold higher than N limited condition alone. Similarly, for C. sorokiniana, highest lipid productivity of 77.03 mgL-1d-1 was achieved with the developed strategy under limited N (500 mgL-1) and P (10 mgL-1) which was 2.67 fold higher than BG11 medium and 2.35 fold higher than N and P limited condition alone. For both the microalgal strains, Fe was the most significant trace metal affecting their lipid productivity. These above observations were further confirmed through photosynthetic performance analysis and gene expression studies. At mid log phase, 6.38 and 5.15 fold increases in the expression levels of rbcL gene were observed under combined stress (OCMS+OE) as compared to the control (BG11) condition in A. obliquus and C. sorokiniana respectively. This also resulted in an increased expression level of accD gene involved in lipid biosynthesis to 10.25 fold and 9.79 fold in A. obliquus and C. sorokiniana respectively at late log phase. The results from expression studies of rbcL and accD genes were in compliance with biomass yields, photosynthetic performance, protein yield and lipid productivities for both the strains under different cultivating conditions. The universal applicability of the above strategy was confirmed by applying it to five other microalgae strains isolated in this study which resulted in considerable increase in their overall lipid productivity under optimized conditions. Attempts were made to scale up the lab scale study to open circular pond (3000L) cultivation for A. obliquus. Results showed a 2.08 fold increase in lipid productivity under optimized conditions compared to the control, which emphasizes the scalability of the developed strategy even under uncontrolled conditions. In conclusion, the developed combined metal and EDTA stress strategy not only assisted in alleviating the biomass productivity but also enhanced the lipid accumulation which resulted in overall increased lipid productivity under N and P limited condition. Furthermore, the improved carbohydrate and protein productivities observed with the developed lipid enhancement strategy make it suitable for biorefinery approach with multiple products. An improvement in lipid profile and high biodiesel conversion were also observed with this universally applicable and scalable lipid enhancement strategy confirming their potential applicability during large scale cultivation for biodiesel production.


2019 ◽  
Vol 120 ◽  
pp. 156-165 ◽  
Author(s):  
Shankha Koley ◽  
Thangavel Mathimani ◽  
Sourav Kumar Bagchi ◽  
Sashi Sonkar ◽  
Nirupama Mallick

Sign in / Sign up

Export Citation Format

Share Document