The Membrane-Bound Nitrate Reductase A from Escherichia Coli: NarGHI

Author(s):  
Michela Bertero
2002 ◽  
Vol 80 (4) ◽  
pp. 435-443 ◽  
Author(s):  
Damaraju Sambasivarao ◽  
Raymond J Turner ◽  
Peter T Bilous ◽  
Richard A Rothery ◽  
Gillian Shaw ◽  
...  

We have generated a chromosomal mutant of moeB (moeBA228T) that demonstrates limited molybdenum cofactor (molybdo-bis(molybdopterin guanine dinucleotide) (Mo-bisMGD)) availability in Escherichia coli and have characterized its effect on the maturation and physiological function of two well-characterized respiratory molybdoenzymes: the membrane-bound dimethylsulfoxide (DMSO) reductase (DmsABC) and the membrane-bound nitrate reductase A (NarGHI). In the moeBA228T mutant strain, E. coli F36, anaerobic respiratory growth is possible on nitrate but not on DMSO, indicating that cofactor insertion occurs into NarGHI but not into DmsABC. Fluorescence analyses of cofactor availability indicate little detectable cofactor in the moeBA228T mutant compared with the wild-type, suggesting that NarGHI is able to scavenge limiting cofactor, whereas DmsABC is not. MoeB functions to sulfurylate MoaD, and in the structure of the MoeB–MoaD complex, Ala-228 is located in the interface region between the two proteins. This suggests that the moeBA228T mutation disrupts the interaction between MoeB and MoaD. In the case of DmsABC, despite the absence of cofactor, the twin-arginine signal sequence of DmsA is cleaved in the moeBA228T mutant, indicating that maturation of the holoenzyme is not cofactor-insertion dependent.Key words: mdybdenum cofactor, DMSO reductase, nitrate reductase.


FEBS Letters ◽  
1978 ◽  
Vol 95 (2) ◽  
pp. 290-294 ◽  
Author(s):  
Gérard Giordano ◽  
Alec Graham ◽  
David H. Boxer ◽  
Bruce A. Haddock ◽  
Edgard Azoulay

2008 ◽  
Vol 191 (3) ◽  
pp. 996-1005 ◽  
Author(s):  
Valley Stewart ◽  
Peggy J. Bledsoe ◽  
Li-Ling Chen ◽  
Amie Cai

ABSTRACT Escherichia coli, a facultative aerobe, expresses two distinct respiratory nitrate reductases. The periplasmic NapABC enzyme likely functions during growth in nitrate-limited environments, whereas the membrane-bound NarGHI enzyme functions during growth in nitrate-rich environments. Maximal expression of the napFDAGHBC operon encoding periplasmic nitrate reductase results from synergistic transcription activation by the Fnr and phospho-NarP proteins, acting in response to anaerobiosis and nitrate or nitrite, respectively. Here, we report that, during anaerobic growth with no added nitrate, less-preferred carbon sources stimulated napF operon expression by as much as fourfold relative to glucose. Deletion analysis identified a cyclic AMP receptor protein (Crp) binding site upstream of the NarP and Fnr sites as being required for this stimulation. The napD and nrfA operon control regions from Shewanella spp. also have apparent Crp and Fnr sites, and expression from the Shewanella oneidensis nrfA control region cloned in E. coli was subject to catabolite repression. In contrast, the carbon source had relatively little effect on expression of the narGHJI operon encoding membrane-bound nitrate reductase under any growth condition tested. Carbon source oxidation state had no influence on synthesis of either nitrate reductase. The results suggest that the Fnr and Crp proteins may act synergistically to enhance NapABC synthesis during growth with poor carbon sources to help obtain energy from low levels of nitrate.


1975 ◽  
Vol 148 (2) ◽  
pp. 329-333 ◽  
Author(s):  
M B Kemp ◽  
B A Haddock ◽  
P B Garland

The synthesis of nitrate reductase and its incorporation into the cytoplasmic membrane of Escherichia coli strain A1004a (5-aminolaevulinic acid auxotroph) does not require synthesis of cytochrome b. The synthesis of the apoprotein(s) of the cytochrome b of the respiratory pathway from NADH to nitrate appears to be inhibited by the absence of haem. No member of the respiratory pathway from NADH to oxygen is capable of reducing nitrate reductase directly. The site on nitrate reductase that oxidizes FMNH2 is located on the cytoplasmic aspect of the cytoplasmic membrane.


1979 ◽  
Vol 184 (1) ◽  
pp. 45-50 ◽  
Author(s):  
E Cadenas ◽  
P B Garland

We have used the penicillin selection method of Autissier & Kepes [(1972) Biochimie 54, 93–101] to study the segregation of membrane-bound respiratory nitrate reductase (EC 1.9.6.1) in Escherichia coli for the three generations after cessation of nitrate reductase synthesis caused by withdrawal of nitrate from the growth medium. We also included a physical separation procedure that permitted direct assay for nitrate reductase activity among all fractions produced by the penicillin selection method. We conclude that the segregation of nitrate reductase after cell division is dispersive, and not semi-conservative as proposed by Autissier & Kepes (1972).


Sign in / Sign up

Export Citation Format

Share Document