Quantum Systems beyond the Rotating Wave Approximation

2018 ◽  
Vol 98 (5) ◽  
Author(s):  
Brian Baker ◽  
Andy C. Y. Li ◽  
Nicholas Irons ◽  
Nathan Earnest ◽  
Jens Koch

2014 ◽  
Vol 23 (02) ◽  
pp. 1450019 ◽  
Author(s):  
Y. A. Sharaby ◽  
S. Lynch ◽  
A. Joshi ◽  
S. S. Hassan

In this paper, we investigate the nonlinear dynamical behavior of dispersive optical bistability (OB) for a homogeneously broadened two-level atomic medium interacting with a single mode of the ring cavity without invoking the rotating wave approximation (RWA). The periodic oscillations (self-pulsing) and chaos of the unstable state of the OB curve is affected by the counter rotating terms through the appearance of spikes during its periods. Further, the bifurcation with atomic detuning, within and outside the RWA, shows that the OB system can be converted from a chaotic system to self-pulsing system and vice-versa.


2021 ◽  
pp. 2150213
Author(s):  
Zhanyuan Yan ◽  
Peihua Qu ◽  
BingBing Xu ◽  
Shihui Zhang ◽  
Jinying Ma

The generalized rotating-wave approximation (GRWA) method is extended to the two-qubit quantum Rabi model. In the first-order approximation (one photon exchange), the Hamiltonian matrix in photon number space is simplified by introducing two variational parameters. However, the Hamiltonian matrix is not a diagonalizable matrix yet. Furthermore, by presenting a constraint condition on coupling strength and atomic transition frequency, the Hamiltonian matrix is simplified and an effective solvable Hamiltonian with block diagonal form is obtained. In the even and odd parity space, the energy spectra and eigenstates of the two-qubit quantum Rabi model are achieved analytically. Most of the energy spectra, especially the lower energy levels, agree well with the numerical exact results in ultra-strong coupling region, and the ground state wave function can gives a fairly accurate result of mean photon number.


Sign in / Sign up

Export Citation Format

Share Document