Use of Magnetic Nanoparticles for the Preparation of Micro- and Nanostructured Materials

Author(s):  
Marco Furlan ◽  
Marco Lattuada
MRS Advances ◽  
2018 ◽  
Vol 3 (61) ◽  
pp. 3581-3587
Author(s):  
Shirley Furtado ◽  
Mariana Brandes ◽  
Catalina Alamón ◽  
Santiago Botasini ◽  
Ana M.B. Cantera

ABSTRACTThe use of nanostructured materials for enzyme immobilization is an active field of research due to its large surface area and the new emergent properties derived from its size. The present work is focused on the synthesis of magnetic nanoparticles for the adsorption of cysteine-proteolytic enzymes extracted from Bromelia antiacantha Bertol (Bromeliaceae) fruit. The results show that enzyme adsorption is highly dependent on the temperature and pH. The biocatalyst activity increased up to 40 %, once immobilized onto the magnetic nanoparticles. In addition, they can be recovered using a magnet allowing them to be reused up to 5 cycles with a marginal loss (5 %) of the initial activity.


Author(s):  
M. José-Yacamán

Electron microscopy is a fundamental tool in materials characterization. In the case of nanostructured materials we are looking for features with a size in the nanometer range. Therefore often the conventional TEM techniques are not enough for characterization of nanophases. High Resolution Electron Microscopy (HREM), is a key technique in order to characterize those materials with a resolution of ~ 1.7A. High resolution studies of metallic nanostructured materials has been also reported in the literature. It is concluded that boundaries in nanophase materials are similar in structure to the regular grain boundaries. That work therefore did not confirm the early hipothesis on the field that grain boundaries in nanostructured materials have a special behavior. We will show in this paper that by a combination of HREM image processing, and image calculations, it is possible to prove that small particles and coalesced grains have a significant surface roughness, as well as large internal strain.


Polymer News ◽  
2005 ◽  
Vol 30 (7) ◽  
pp. 214-216
Author(s):  
G. Carotenuto

Polymer News ◽  
2004 ◽  
Vol 29 (3) ◽  
pp. 77-81
Author(s):  
G. Carotenuto

Polymer News ◽  
2004 ◽  
Vol 29 (1) ◽  
pp. 17-18
Author(s):  
G. Carotenuto

PIERS Online ◽  
2009 ◽  
Vol 5 (3) ◽  
pp. 231-234 ◽  
Author(s):  
Tsung-Han Tsai ◽  
Long-Sheng Kuo ◽  
Ping-Hei Chen ◽  
Chin-Ting Yang

2017 ◽  
Author(s):  
Bo Tian ◽  
Peter Svedlindh ◽  
Mattias Strömberg ◽  
Erik Wetterskog

In this work, we demonstrate for the first time, a ferromagnetic resonance (FMR) based homogeneous and volumetric biosensor for magnetic label detection. Two different isothermal amplification methods, <i>i.e.</i>, rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP) are adopted and combined with a standard electron paramagnetic resonance (EPR) spectrometer for FMR biosensing. For RCA-based FMR biosensor, binding of RCA products of a synthetic Vibrio cholerae target DNA sequence gives rise to the formation of aggregates of magnetic nanoparticles. Immobilization of nanoparticles within the aggregates leads to a decrease of the net anisotropy of the system and a concomitant increase of the resonance field. A limit of detection of 1 pM is obtained with an average coefficient of variation of 0.16%, which is superior to the performance of other reported RCA-based magnetic biosensors. For LAMP-based sensing, a synthetic Zika virus target oligonucleotide is amplified and detected in 20% serum samples. Immobilization of magnetic nanoparticles is induced by their co-precipitation with Mg<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (a by-product of LAMP) and provides a detection sensitivity of 100 aM. The fast measurement, high sensitivity and miniaturization potential of the proposed FMR biosensing technology makes it a promising candidate for designing future point-of-care devices.<br>


Sign in / Sign up

Export Citation Format

Share Document