2010 ◽  
Vol 75 (3) ◽  
pp. 607-622 ◽  
Author(s):  
Pukhrambam Grihanjali Devi ◽  
Elizabeth A. Campbell ◽  
Seth A. Darst ◽  
Bryce E. Nickels

1994 ◽  
Vol 41 (4) ◽  
pp. 415-419
Author(s):  
M Radłowski ◽  
D Job

The effect of disulfide and sulfhydryl reagents on the rate of abortive and productive elongation has been studied using Escherichia coli RNA polymerase holoenzyme and poly[d(A-T)] as template. In the presence of UTP as a single substrate and UpA as a primer, the enzyme catalyzed efficiently the synthesis of the trinucleotide product UpApU. Incubation of RNA polymerase with 1 mM 2-mercaptoethanol resulted in a 5-fold increase of the rate of UpApU synthesis. In contrast, incubation of the enzyme with 1 mM 5,5'-dithio-bis(2-nitrobenzoic) acid resulted in a 6-fold decrease of the rate of abortive elongation. Determination of the steady state kinetic constants associated with UpApU synthesis disclosed that the disulfide and sulfhydryl reagents mainly affected the rate of UpApU release from the ternary transcription complexes and therefore influenced the stability of such complexes.


2002 ◽  
Vol 58 (9) ◽  
pp. 1497-1500 ◽  
Author(s):  
Marina N. Vassylyeva ◽  
Jookyung Lee ◽  
Shun-ichi Sekine ◽  
Oleg Laptenko ◽  
Seiki Kuramitsu ◽  
...  

1980 ◽  
Vol 112 (2) ◽  
pp. 419-423 ◽  
Author(s):  
Peter STOCKEL ◽  
Roland MAY ◽  
Irmtraud STRELL ◽  
Zdenka CEJKA ◽  
Walter HOPPE ◽  
...  

2003 ◽  
Vol 185 (17) ◽  
pp. 5148-5157 ◽  
Author(s):  
Christine M. Beatty ◽  
Douglas F. Browning ◽  
Stephen J. W. Busby ◽  
Alan J. Wolfe

ABSTRACT The cyclic AMP receptor protein (CRP) activates transcription of the Escherichia coli acs gene, which encodes an acetate-scavenging enzyme required for fitness during periods of carbon starvation. Two promoters direct transcription of acs, the distal acsP1 and the proximal acsP2. In this study, we demonstrated that acsP2 can function as the major promoter and showed by in vitro studies that CRP facilitates transcription by “focusing” RNA polymerase to acsP2. We proposed that CRP activates transcription from acsP2 by a synergistic class III mechanism. Consistent with this proposal, we showed that CRP binds two sites, CRP I and CRP II. Induction of acs expression absolutely required CRP I, while optimal expression required both CRP I and CRP II. The locations of these DNA sites for CRP (centered at positions −69.5 and −122.5, respectively) suggest that CRP interacts with RNA polymerase through class I interactions. In support of this hypothesis, we demonstrated that acs transcription requires the surfaces of CRP and the C-terminal domain of the α subunit of RNA polymerase holoenzyme (α-CTD), which is known to participate in class I interactions: activating region 1 of CRP and the 287, 265, and 261 determinants of the α-CTD. Other surface-exposed residues in the α-CTD contributed to acs transcription, suggesting that the α-CTD may interact with at least one protein other than CRP.


Sign in / Sign up

Export Citation Format

Share Document