productive elongation
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 2)

Open Biology ◽  
2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Abderhman Abuhashem ◽  
Vidur Garg ◽  
Anna-Katerina Hadjantonakis

The coordinated regulation of transcriptional networks underpins cellular identity and developmental progression. RNA polymerase II promoter-proximal pausing (Pol II pausing) is a prevalent mechanism by which cells can control and synchronize transcription. Pol II pausing regulates the productive elongation step of transcription at key genes downstream of a variety of signalling pathways, such as FGF and Nodal. Recent advances in our understanding of the Pol II pausing machinery and its role in transcription call for an assessment of these findings within the context of development. In this review, we discuss our current understanding of the molecular basis of Pol II pausing and its function during organismal development. By critically assessing the tools used to study this process we conclude that combining recently developed genomics approaches with refined perturbation systems has the potential to expand our understanding of Pol II pausing mechanistically and functionally in the context of development and beyond.


2021 ◽  
Author(s):  
Hai Zheng ◽  
Qianwei Jin ◽  
Yilun Qi ◽  
Weida Liu ◽  
Yulei Ren ◽  
...  

For the majority of expressed eukaryotic genes, RNA polymerase II (Pol II) forms a paused elongation complex (PEC) and undergoes promoter-proximal pausing downstream of the transcription start site. The polymerase either proceeds into productive elongation or undergoes promoter-proximal premature transcription termination. It remains incompletely understood how transcription is regulated at this stage. Here, we determined the structure of PEC bound to INTAC, an Integrator-containing PP2A complex, at near-atomic resolution. The structure shows that INTAC partially wraps around PEC through multiple contacts, permitting the memetic nascent RNA to run into substrate-entry tunnel of the endonuclease subunit INTS11 of INTAC for cleavage. Pol II C-terminal domain (CTD) winds over INTAC backbone module through multiple anchors and is suspended above the phosphatase of INTAC for dephosphorylation. Biochemical analysis shows that INTAC-PEC association requires unphosphorylated CTD and could tolerate CTD phosphorylation, suggesting an INTAC-mediated persistent CTD dephosphorylation followed by reinforcement of the INTAC-PEC complex. Our study reveals how INTAC binds PEC and orchestrates RNA cleavage and CTD dephosphorylation, two critical events in generating premature transcription termination.


Author(s):  
Sylvain Egloff

AbstractCyclin-dependent kinase 9 (CDK9), the kinase component of positive transcription elongation factor b (P-TEFb), is essential for transcription of most protein-coding genes by RNA polymerase II (RNAPII). By releasing promoter-proximally paused RNAPII into gene bodies, CDK9 controls the entry of RNAPII into productive elongation and is, therefore, critical for efficient synthesis of full-length messenger (m)RNAs. In recent years, new players involved in P-TEFb-dependent processes have been identified and an important function of CDK9 in coordinating elongation with transcription initiation and termination has been unveiled. As the regulatory functions of CDK9 in gene expression continue to expand, a number of human pathologies, including cancers, have been associated with aberrant CDK9 activity, underscoring the need to properly regulate CDK9. Here, I provide an overview of CDK9 function and regulation, with an emphasis on CDK9 dysregulation in human diseases.


2020 ◽  
Vol 4 (3) ◽  
pp. e202000792
Author(s):  
Li Ding ◽  
Maciej Paszkowski-Rogacz ◽  
Jovan Mircetic ◽  
Debojyoti Chakraborty ◽  
Frank Buchholz

The RNA polymerase II (RNAPII) associated factor 1 complex (Paf1C) plays critical roles in modulating the release of paused RNAPII into productive elongation. However, regulation of Paf1C-mediated promoter-proximal pausing is complex and context dependent. In fact, in cancer cell lines, opposing models of Paf1Cs’ role in RNAPII pause-release control have been proposed. Here, we show that the Paf1C positively regulates enhancer activity in mouse embryonic stem cells. In particular, our analyses reveal extensive Paf1C occupancy and function at super enhancers. Importantly, Paf1C occupancy correlates with the strength of enhancer activity, improving the predictive power to classify enhancers in genomic sequences. Depletion of Paf1C attenuates the expression of genes regulated by targeted enhancers and affects RNAPII Ser2 phosphorylation at the binding sites, suggesting that Paf1C-mediated positive regulation of pluripotency enhancers is crucial to maintain mouse embryonic stem cell self-renewal.


Author(s):  
Julius Judd ◽  
Fabiana M. Duarte ◽  
John T. Lis

SummaryTranscriptionally silent genes must be activated throughout development. This requires nucleosomes be removed from promoters and enhancers to allow transcription factor binding (TFs) and recruitment of coactivators and RNA Polymerase II (Pol II). Specialized pioneer TFs bind nucleosome-wrapped DNA to perform this chromatin opening by mechanisms that remain incompletely understood1–3. Here, we show that GAGA-factor (GAF), a Drosophila pioneer factor4, interacts with both SWI/SNF and ISWI family chromatin remodelers to allow recruitment of Pol II and entry to a promoter-proximal paused state, and also to promote Pol II’s transition to productive elongation. We found that GAF functions with PBAP (SWI/SNF) to open chromatin and allow Pol II to be recruited. Importantly this activity is not dependent on NURF as previously proposed5–7; however, GAF also functions with NURF downstream of this process to ensure efficient Pol II pause release and transition to productive elongation apparently through its role in precisely positioning the +1 nucleosome. These results demonstrate how a single sequence-specific pioneer TF can synergize with remodelers to activate sets of genes. Furthermore, this behavior of remodelers is consistent with findings in yeast8–10 and mice11–13, and likely represents general, conserved mechanisms found throughout Eukarya.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Zaur M. Kachaev ◽  
Lyubov A. Lebedeva ◽  
Eugene N. Kozlov ◽  
Yulii V. Shidlovskii

Abstract Early stages of transcription from eukaryotic promoters include two principal events: the capping of newly synthesized mRNA and the transition of RNA polymerase II from the preinitiation complex to the productive elongation state. The capping checkpoint model implies that these events are tightly coupled, which is necessary for ensuring the proper capping of newly synthesized mRNA. Recent findings also show that the capping machinery has a wider effect on transcription and the entire gene expression process. The molecular basis of these phenomena is discussed.


2019 ◽  
Author(s):  
Nathan D. Elrod ◽  
Telmo Henriques ◽  
Kai-Lieh Huang ◽  
Deirdre C. Tatomer ◽  
Jeremy E. Wilusz ◽  
...  

SUMMARYThe transition of RNA polymerase II (Pol II) from initiation to productive elongation is a central, regulated step in metazoan gene expression. At many genes, Pol II pauses stably in early elongation, remaining engaged with the 25-60 nucleotide-long nascent RNA for many minutes while awaiting signals for release into the gene body. However, a number of genes display highly unstable promoter Pol II, suggesting that paused polymerase might dissociate from template DNA at these promoters and release a short, non-productive mRNA. Here, we report that paused Pol II can be actively destabilized by the Integrator complex. Specifically, Integrator utilizes its RNA endonuclease activity to cleave nascent RNA and drive termination of paused Pol II. These findings uncover a previously unappreciated mechanism of metazoan gene repression, akin to bacterial transcription attenuation, wherein promoter-proximal Pol II is prevented from entering productive elongation through factor-regulated termination.HighlightsThe Integrator complex inhibits transcription elongation at ∼15% of mRNA genesIntegrator targets promoter-proximally paused Pol II for terminationThe RNA endonuclease of Integrator subunit 11 is critical for gene attenuationIntegrator-repressed genes are enriched in signaling and growth-responsive pathways


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Nikolai Petkau ◽  
Harun Budak ◽  
Xunlei Zhou ◽  
Henrik Oster ◽  
Gregor Eichele

Many physiological processes exhibit circadian rhythms driven by cellular clocks composed of interlinked activating and repressing elements. To investigate temporal regulation in this molecular oscillator, we combined mouse genetic approaches and analyses of interactions of key circadian proteins with each other and with clock gene promoters. We show that transcriptional activators control BRD4-PTEFb recruitment to E-box-containing circadian promoters. During the activating phase of the circadian cycle, the lysine acetyltransferase TIP60 acetylates the transcriptional activator BMAL1 leading to recruitment of BRD4 and the pause release factor P-TEFb, followed by productive elongation of circadian transcripts. We propose that the control of BRD4-P-TEFb recruitment is a novel temporal checkpoint in the circadian clock cycle.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Mrutyunjaya Parida ◽  
Kyle A. Nilson ◽  
Ming Li ◽  
Christopher B. Ball ◽  
Harrison A. Fuchs ◽  
...  

ABSTRACTThe large genome of human cytomegalovirus (HCMV) is transcribed by RNA polymerase II (Pol II). However, it is not known how closely this betaherpesvirus follows host transcriptional paradigms. We applied PRO-Seq and PRO-Cap methods to profile and quantify transcription initiation and productive elongation across the host and virus genomes in late infection. A major similarity between host transcription and viral transcription is that treatment of cells with the P-TEFb inhibitor flavopiridol preempts virtually all productive elongation, which otherwise covers most of the HCMV genome. The deep, nucleotide resolution identification of transcription start sites (TSSs) enabled an extensive analysis of core promoter elements. An important difference between host and viral transcription is that initiation is much more pervasive on the HCMV genome. The sequence preferences in the initiator region around the TSS and the utilization of upstream T/A-rich elements are different. Upstream TATA positions the TSS and boosts initiation in both the host and the virus, but upstream TATT has a significant stimulatory impact only on the viral template. The major immediate early (MIE) promoter remained active during late infection and was accompanied by transcription of both strands of the MIE enhancer from promoters within the enhancer. Surprisingly, we found that the long noncoding RNA4.9 is intimately associated with the viral origin of replication (oriLyt) and was transcribed to a higher level than any other viral or host promoter. Finally, our results significantly contribute to the idea that late in infection, transcription takes place on viral genomes that are not highly chromatinized.IMPORTANCEHuman cytomegalovirus infects more than half of humans, persists silently in virtually all tissues, and produces life-threatening disease in immunocompromised individuals. HCMV is also the most common infectious cause of birth defects and the leading nongenetic cause of sensorineural hearing loss in the United States. Because there is no vaccine and current drugs have problems with potency, toxicity, and antiviral drug resistance, alternative treatment strategies that target different points of viral control are needed. Our current study contributes to this goal by applying newly developed methods to examine transcription of the HCMV and host genomes at nucleotide resolution in an attempt to find targetable differences between the two. After a thorough analysis of productive elongation and of core promoter element usage, we found that some mechanisms of regulating transcription are shared between the host and HCMV but that others are distinctly different. This suggests that HCMV transcription may be a legitimate target for future antiviral therapies and this might translate to other herpesviruses.


2016 ◽  
Author(s):  
Hussain A. Zaidi ◽  
David T. Auble ◽  
Stefan Bekiranov

AbstractCompetition chip is an experimental method that allows transcription factor (TF) chromatin turnover dynamics to be measured across a genome. We develop and apply a physical model of TF-chromatin competitive binding using chemical reaction rate theory and derive the physical half-life or residence time for TATA-binding protein (TBP) across the yeast genome from competition ChIP data. Using our physical modeling approach where we explicitly include the induction profile of the competitor in the model, we are able to estimate yeast TBP-chromatin residence time as short as 1.3 minutes, demonstrating that competition ChIP is a relatively high temporal-resolution approach. Strikingly, we find a median value of ~5 TBP-chromatin binding events associated with the synthesis of one RNA molecule across Pol II genes, suggesting multiple rounds of pre-initiation complex assembly and disassembly before productive elongation of Pol II is achieved at most genes in the yeast genome.


Sign in / Sign up

Export Citation Format

Share Document