Universal array (universal microarray, “one-chip-for-all”)

Keyword(s):  
2008 ◽  
Vol 29 (2) ◽  
pp. 306-314 ◽  
Author(s):  
Cai-Xia Li ◽  
Qian Pan ◽  
Yong-Gang Guo ◽  
Yan Li ◽  
Hua-Fang Gao ◽  
...  

2004 ◽  
Vol 50 (11) ◽  
pp. 2028-2036 ◽  
Author(s):  
Susan Bortolin ◽  
Margot Black ◽  
Hemanshu Modi ◽  
Ihor Boszko ◽  
Daniel Kobler ◽  
...  

Abstract Background: We have developed a novel, microsphere-based universal array platform referred to as the Tag-It™ platform. This platform is suitable for high-throughput clinical genotyping applications and was used for multiplex analysis of a panel of thrombophilia-associated single-nucleotide polymorphisms (SNPs). Methods: Genomic DNA from 132 patients was amplified by multiplex PCR using 6 primer sets, followed by multiplex allele-specific primer extension using 12 universally tagged genotyping primers. The products were then sorted on the Tag-It array and detected by use of the Luminex xMAP™ system. Genotypes were also determined by sequencing. Results: Empirical validation of the universal array showed that the highest nonspecific signal was 3.7% of the specific signal. Patient genotypes showed 100% concordance with direct DNA sequencing data for 736 SNP determinations. Conclusions: The Tag-It microsphere-based universal array platform is a highly accurate, multiplexed, high-throughput SNP-detection platform.


2003 ◽  
Vol 64 (1) ◽  
pp. 168-178 ◽  
Author(s):  
Clarissa Consolandi ◽  
Elena Busti ◽  
Cinzia Pera ◽  
Laura Delfino ◽  
Gian Battista Ferrara ◽  
...  

1981 ◽  
Vol 3 (3) ◽  
pp. 14-18
Author(s):  
Richard Noto ◽  
Fred Borgini ◽  
Barry Suskind
Keyword(s):  

2004 ◽  
Vol 70 (12) ◽  
pp. 7161-7172 ◽  
Author(s):  
Bianca Castiglioni ◽  
Ermanno Rizzi ◽  
Andrea Frosini ◽  
Kaarina Sivonen ◽  
Pirjo Rajaniemi ◽  
...  

ABSTRACT The cyanobacteria are photosynthetic prokaryotes of significant ecological and biotechnological interest, since they strongly contribute to primary production and are a rich source of bioactive compounds. In eutrophic fresh and brackish waters, their mass occurrences (water blooms) are often toxic and constitute a high potential risk for human health. Therefore, rapid and reliable identification of cyanobacterial species in complex environmental samples is important. Here we describe the development and validation of a microarray for the identification of cyanobacteria in aquatic environments. Our approach is based on the use of a ligation detection reaction coupled to a universal array. Probes were designed for detecting 19 cyanobacterial groups including Anabaena/Aphanizomenon, Calothrix, Cylindrospermopsis, Cylindrospermum, Gloeothece, halotolerants, Leptolyngbya, Palau Lyngbya, Microcystis, Nodularia, Nostoc, Planktothrix, Antarctic Phormidium, Prochlorococcus, Spirulina, Synechococcus, Synechocystis, Trichodesmium, and Woronichinia. These groups were identified based on an alignment of over 300 cyanobacterial 16S rRNA sequences. For validation of the microarrays, 95 samples (24 axenic strains from culture collections, 27 isolated strains, and 44 cloned fragments recovered from environmental samples) were tested. The results demonstrated a high discriminative power and sensitivity to 1 fmol of the PCR-amplified 16S rRNA gene. Accurate identification of target strains was also achieved with unbalanced mixes of PCR amplicons from different cyanobacteria and an environmental sample. Our universal array method shows great potential for rapid and reliable identification of cyanobacteria. It can be easily adapted to future development and could thus be applied both in research and environmental monitoring.


2007 ◽  
Vol 129 (3) ◽  
pp. 565-574 ◽  
Author(s):  
Clarissa Consolandi ◽  
Luisa Palmieri ◽  
Silvia Doveri ◽  
Elena Maestri ◽  
Nelson Marmiroli ◽  
...  

2011 ◽  
Vol 25 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Andrea Lauri ◽  
Bianca Castiglioni ◽  
Stefano Morabito ◽  
Rosangela Tozzoli ◽  
Clarissa Consolandi ◽  
...  

Author(s):  
Yingxu Wang ◽  
Jason Huang ◽  
Jingsheng Lei

Arrays are one of the most fundamental and widely applied data structures, which are useful for modeling both logical designs and physical implementations of multi-dimensional data objects sharing the same type of homogeneous elements. However, there is a lack of a formal model of the universal array based on it any array instance can be derived. This paper studies the fundamental properties of Universal Array (UA) and presents a comprehensive design pattern. A denotational mathematics, Real-Time Process Algebra (RTPA), allows both architectural and behavioral models of UA to be rigorously designed and refined in a top-down approach. The conceptual model of UA is rigorously described by tuple- and matrix-based mathematical models. The architectural models of UA are created using RTPA architectural modeling methodologies known as the Unified Data Models (UDMs). The physical model of UA is implemented using linear list that is indexed by an offset pointer of elements. The behavioral models of UA are specified and refined by a set of Unified Process Models (UPMs). As a case study, the formal UA models are implemented in Java. This work has been applied in a number of real-time and nonreal-time systems such as compilers, a file management system, the real-time operating system (RTOS+), and the ADT library for an RTPA-based automatic code generation tool.


Sign in / Sign up

Export Citation Format

Share Document