olive variety
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 20)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Dilşat Bozdoğan Konuşkan

There are 97 local olive varieties registered in our country, and Saurani is an olive variety from originating Hatay/Altınözü. Hatay province, which ranks first in olive production in the Mediterranean Region, has very suitable climate and soil conditions for olive cultivation. The aim of this study is to investigate the effect of olive maturity on quality parameters such as free fatty acids, peroxide value and fatty acid composition of the oil obtained from the Saurani olive variety grown in Hatay. For this purpose, olive oil was obtained by mechanical method from olives collected from Saurani variety in 3 different maturity periods of the 2020 production season. In Saurani olive oil, free fatty acids and peroxide numbers were found in the range of 0.62-0.91 % (oleic acid) and 3.68-5.26 meq O2/kg respectively. The amount of free fatty acids increased with maturity. In Saurani olive oil were determined oleic acid in the range of 66.32%-68.79%, palmitic acid in the range of12.47-13.75%, linoleic acid in the range of 11.43-13.84%, stearic acid in the range of 3.16-3.42%, palmitoleic acid 1.12%-1.34%, linolenic acid 0.88-1.01% and arachidic acid 0.41-0.52. It was determined that decrease in oleic acid content and an increase in linoleic acid content with maturity. It has been determined that Saurani olive oil is within the limits specified in the Turkish Food Codex on Olive Oil and Pirina Olive Oil in terms of the examined properties.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Arafat Hanani ◽  
Franco Valentini ◽  
Simona M. Sanzani ◽  
Franco Santoro ◽  
Serena A. Minutillo ◽  
...  

Endophytes are symptomless fungal and/or bacterial microorganisms found in almost all living plant species. The symbiotic association with their host plants by colonizing the internal tissues has endowed them as a valuable tool to suppress diseases, stimulate growth, and promote stress resistance. In this context, the study of culturable endophytes residing the sapwood of Apulian olives might be a promising control strategy for xylem colonizing pathogens as Xylella fastidiosa. To date, olive sapwood cultivable endophytes are still under exploration; therefore, this work pursues a study of cultivable endophytes occurrence variation in the sapwood of different olive varieties under the effect of seasonality, geographical coordinates, and X. fastidiosa infection status. Our study confirms the stability of sapwood endophytic culturable communities in the resistant olive variety and presents the seasonal and geographical fluctuation of olive trees’ sapwood endophytes. It also describes the diversity and occurrence frequency of fungal and bacterial genera, and finally retrieves some of the sapwood-inhabiting fungal and bacterial isolates, known as biocontrol agents of plant pathogens. Thus, the potential role of these bacterial and fungal isolates in conferring olive tree protection against X. fastidiosa should be further investigated.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7182
Author(s):  
Ioannis Martakos ◽  
Panagiota Katsianou ◽  
Georgios Koulis ◽  
Elvira Efstratiou ◽  
Eleni Nastou ◽  
...  

In this study, an overall survey regarding the determination of several bioactive compounds in olive fruit is presented. Two methodologies were developed, one UPLC-Q-TOF-MS method for the determination of olive fruit phenolic compounds and one HPLC-DAD methodology targeting the determination of pigments (chlorophylls and carotenoids), tocopherols (α-, β, -γ, δ-) and squalene. Target and suspect screening workflows were developed for the thorough fingerprinting of the phenolic fraction of olives. Both methods were validated, presenting excellent performance characteristics, and can be used as reliable tools for the monitoring of bioactive compounds in olive fruit samples. The developed methodologies were utilized to chemical characterize the fruits of the Kolovi olive variety, originating from the island of Lesvos, North Aegean Region, Greece. Twenty-five phenolic compounds were identified and quantified in Kolovi olives with verbascoside, hydroxytyrosol, oleacein and oleomissional found in significantly high concentrations. Moreover, 12 new bioactive compounds were identified in the samples using an in-house suspect database. The results of pigments analysis suggested that Kolovi variety should be characterized as low pigmentation, while the tocopherol and squalene content was relatively high compared to other olive varieties. The characterization of Kolovi olive bioactive content highlighted the high nutritional and possible economic value of the Kolovi olive fruit.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hélia Sales ◽  
Zlatko Šatović ◽  
Mara Lisa Alves ◽  
Pedro Fevereiro ◽  
João Nunes ◽  
...  

Olea europaea ‘Galega vulgar’ variety is a blend of West and Central Mediterranean germplasm with cultivated-wild admixture characteristics. ‘Galega vulgar’ is known for its high rusticity and superior-quality olive oil, being the main Portuguese variety with high impact for bioeconomy. Nevertheless, it has been replaced by higher-yielding and more adapted to intensive production foreign varieties. To clarify the potential ancestral origin, genetic diversity evolution, and existing genetic relationships within the national heritage of ‘Galega vulgar’, 595 trees, belonging to ancient and centenary age groups and prospected among ten traditional production regions, were characterized using 14 SSR markers after variety validation by endocarp measurements. Ninety-five distinguishable genets were identified, revealing the presence of a reasonable amount of intra-genetic and morphological variability. A minimum spanning tree, depicting the complete genealogy of all identified genets, represented the ‘Galega vulgar’ intra-varietal diversity, with 94% of the trees showing only a two-allele difference from the most frequent genet (C001). Strong correlations between the number of differentiating alleles from C001, the clonal size, and their net divergence suggested an ancestral monoclonal origin of the ‘Galega vulgar’, with the most frequent genet identified as the most likely origin of all the genets and phenotypic diversification occurring through somatic mutations. Genetic erosion was detected through the loss of some allele combinations across time. This work highlights the need to recover the lost diversity in this traditional olive variety by including ancient private genets (associated with potential adaptation traits) in future breeding programs and investing in the protection of these valuable resources in situ by safeguarding the defined region of origin and dispersion of ‘Galega vulgar’. Furthermore, this approach proved useful on a highly diverse olive variety and thus applicable to other diverse varieties due either to their intermediate nature between different gene pools or to the presence of a mixture of cultivated and wild traits (as is the case of ‘Galega vulgar’).


2021 ◽  
Vol 72 (2) ◽  
pp. e407
Author(s):  
M. Mounir ◽  
J. Hammoucha ◽  
O. Taleb ◽  
M. Afechtal ◽  
A. Hamouda ◽  
...  

This study aims to develop a method for the preparation of natural table olives using locally selected microorganisms and without resorting to the usual techniques which employ lye treatment and acids. The effects of parameters, such as lye treatment, inoculation with yeasts, substitution of organic acids with vinegar and/or acetic acid bacteria, and finally alternating aeration have been assessed. Four different combinations were applied to the “Picholine marocaine” olive variety using indigenous strains, namely Lactobacillus plantarum S1, Saccharomyces cerevisiae LD01 and Acetobacter pasteurianus KU710511 (CV01) isolated respectively from olive brine, Bouslikhen dates and Cactus. Two control tests, referring to traditional and industrial processes, were used as references. Microbial and physicochemical tests showed that the L3V combination (inoculated with A. pasteurianus KU710511 and L. plantarum S1 under the optimal growth conditions of the Acetic Acid Bacteria (AAB) strain with 6% NaCl) was found to be favorable for the growth of the Lactic Acid Bacteria (LAB) strain which plays the key role in olive fermentation. This result was confirmed by sensory evaluation, placing L3V at the top of the evaluated samples, surpassing the industrial one where a chemical debittering treatment with lye was used. In addition, alternating aeration served to increase the microbial biomass of both AAB and LAB strains along with Saccharomyces cerevisiae LD01 strain, but also to use lower concentration of NaCl and to reduce the deterioration of olives compared to the anaerobic fermentation process. Finally, a mixed starter containing the three strains was prepared in a 10-L Lab-fermenter from the L3V sample in order to improve it in subsequent studies. The prepared starter mixture could be suitable for use as a parental strain to prepare table olives for artisan and industrial application in Morocco.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 877
Author(s):  
Anallely López-Yerena ◽  
Antonia Ninot ◽  
Núria Jiménez-Ruiz ◽  
Julián Lozano-Castellón ◽  
Maria Pérez ◽  
...  

The ancient ‘Corbella’ olive variety from the center-north of Catalonia is being recovered to obtain quality extra-virgin olive oil (EVOO) with unique organoleptic properties. The aim of this work was to determine the effect of agronomic and technical factors on the phenolic fingerprint of EVOO and to establish the optimum harvesting time and crushing and malaxation conditions for ‘Corbella’ olives. Therefore, three different ripening indices (0.3, 1.2, and 3.2) and three crushing temperatures (10, 18, and 25 OC) were studied. Additionally, a factorial design to optimize the phenolic concentration of the EVOO was developed, applying a range of sieve diameters (4 and 6 mm), and malaxation time (30 and 60 min) and temperature (27, 32, and 37 °C). The phenolic profile was analyzed by ultra-high performance liquid chromatography coupled to mass spectrometry in a tandem detector. The level of secoiridoids, the major phenolic compounds in the oil, was higher when using olives harvested earlier. Oleuropein aglycone and ligstroside aglycone were degraded during crushing at high temperatures, resulting in the formation of oleacein and oleocanthal. The best processing conditions in terms of total phenolic content were found to be 30 min of malaxation at 37 OC, the crushing size not having any affect.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 368
Author(s):  
Paula Garcia-Oliveira ◽  
Cecilia Jimenez-Lopez ◽  
Catarina Lourenço-Lopes ◽  
Franklin Chamorro ◽  
Antia Gonzalez Pereira ◽  
...  

Extra virgin olive oil (EVOO) is one of the most distinctive ingredients of the Mediterranean diet. There are many properties related to this golden ingredient, from supreme organoleptic characteristics to benefits for human health. EVOO contains in its composition molecules capable of exerting bioactivities such as cardio protection, antioxidant, anti-inflammatory, antidiabetic, and anticancer activity, among others, mainly caused by unsaturated fatty acids and certain minor compounds such as tocopherols or phenolic compounds. EVOO is considered the highest quality vegetable oil, which also implies a high sensory quality. The organoleptic properties related to the flavor of this valued product are also due to the presence of a series of compounds in its composition, mainly some carbonyl compounds found in the volatile fraction, although some minor compounds such as phenolic compounds also contribute. However, these properties are greatly affected by the incidence of certain factors, both intrinsic, such as the olive variety, and extrinsic, such as the growing conditions, so that each EVOO has a particular flavor. Furthermore, these flavors are susceptible to change under the influence of other factors throughout the oil's shelf-life, such as oxidation or temperature. This work offers a description of some of the most remarkable compounds responsible for EVOO’s unique flavor and aroma, the factors affecting them, the mechanism that lead to the degradation of EVOO, and how flavors can be altered during the shelf-life of the oil, as well as several strategies suggested for the preservation of this flavor, on which the quality of the product also depends.


2020 ◽  
Vol 116 (2) ◽  
pp. 205
Author(s):  
Mirjana ADAKALIĆ ◽  
Biljana LAZOVIĆ ◽  
Alenka BARUCA ARBEITER ◽  
Matjaž HLADNIK ◽  
Jernej JAKŠE ◽  
...  

<p>The ‘Žutica’ represents the most common Montenegrin olive varieties mainly used for the production of olive oil and green and black fruit canning. Traditionally, the olive plants have been propagated vegetatively, and a small level of genetic polymorphism is expected among clones of the same variety. This topic was only partially studied in the Montenegrin olive ‘Žutica’. Therefore, this study aimed to determine intra-varietal genetic variability in twenty-three ‘Žutica’ trees selected in situ, analyzing the variability of morphological traits and microsatellites. The Principal Component Analyses (PCA) with six axes explains the total cumulative variance of 91.3 %, with fruit and endocarp traits in the first three PC. The unweighted pair group method with arithmetic mean of twenty morphological traits grouped ‘Žutica’ trees into two clusters and five independent trees. Nine microsatellite primers amplified 31 fragments of which 22 were polymorphic and enabled the detection of nine different microsatellite profiles (potential different clones). A comparison of dendrogram groups based on morphological and microsatellite markers showed low cophenetic values in the determination of intra-varietal variability. The results showed that the old variety ‘Žutica’, from a relatively small geographic region, has a variable genetic base, which could be used in the selection of superior clones.</p>


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1074
Author(s):  
Paulina Tapia-Quirós ◽  
Maria Fernanda Montenegro-Landívar ◽  
Monica Reig ◽  
Xanel Vecino ◽  
Teresa Alvarino ◽  
...  

In this study, the recovery of polyphenols from olive oil mill and winery waste was investigated. The performance of ultrasound assisted extraction (UAE), microwave assisted extraction (MAE), and pressurized liquid extraction (PLE) was assessed using ethanol–water mixtures, which are compatible with food, nutraceutical, and cosmetic applications. The extraction efficiency from olive pomace and lees samples was evaluated in terms of total polyphenol content (TPC), determined by high performance liquid chromatography (HPLC) and Folin–Ciocalteu assay. The effect of solvent composition, temperature, and time was analyzed by response surface methodology. Ethanol:water 50:50 (v/v) was found to be a suitable solvent mixture for both kinds of samples and all three extraction techniques. The performance of the extraction techniques was evaluated, under optimal experimental conditions, with a set of different representative samples of residues from olive oil and wine production. Overall, the best extraction efficiency for olive pomace residues was provided by MAE (ethanol:water 50:50 (v/v), 90 °C, 5 min), and for wine residues by PLE (ethanol:water 50:50 (v/v), 100 °C, 5 min, 1 cycle). However, the results provided by UAE (ethanol:water 50:50 (v/v), 30 min) were also suitable. Considering not only extraction performance, but also investment and operational costs, UAE is proposed for a future scaling up evaluation. Regarding olive pomace as a source for natural phenolic antioxidants, olive variety and climatic conditions should be taken into account, since both influence TPC in the extracts, while for winery residues, lees from red wines are more suitable than those from white wines.


Sign in / Sign up

Export Citation Format

Share Document