scholarly journals Construction of a multiplex allele-specific PCR-based universal array (ASPUA) and its application to hearing loss screening

2008 ◽  
Vol 29 (2) ◽  
pp. 306-314 ◽  
Author(s):  
Cai-Xia Li ◽  
Qian Pan ◽  
Yong-Gang Guo ◽  
Yan Li ◽  
Hua-Fang Gao ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ana Paula Grillo ◽  
Flávia Marcorin de Oliveira ◽  
Gabriela Queila de Carvalho ◽  
Ruan Felipe Vieira Medrano ◽  
Sueli Matilde da Silva-Costa ◽  
...  

Single nucleotide polymorphisms (SNPs) are important markers in many studies that link DNA sequence variations to phenotypic changes; such studies are expected to advance the understanding of human physiology and elucidate the molecular basis of diseases. TheDFNB1locus, which contains theGJB2andGJB6genes, plays a key role in nonsyndromic hearing loss. Previous studies have identified important mutations in this locus, but the contribution of SNPs in the genes has not yet been much investigated. The aim of this study was to investigate the association of nine polymorphisms located within theDFNB1locus with the occurrence of autosomal recessive nonsyndromic hearing loss (ARNSHL). The SNPs rs3751385 (C/T), rs7994748 (C/T), rs7329857 (C/T), rs7987302 (G/A), rs7322538 (G/A), rs9315400 (C/T), rs877098 (C/T), rs945369 (A/C), and rs7333214 (T/G) were genotyped in 122 deaf patients and 132 healthy controls using allele-specific PCR. There were statistically significant differences between patients and controls, in terms of allelic frequencies in the SNPs rs3751385, rs7994748, rs7329857, rs7987302, rs945369, and rs7333214 (P<0.05). No significant differences between the two groups were observed for rs7322538, rs9315400, and rs877098. Our results suggest that SNPs present in theGJB2andGJB6genes may have an influence on ARNSHL in humans.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Yu Ding ◽  
Jianyong Lang ◽  
Junkun Zhang ◽  
Jianfeng Xu ◽  
Xiaojiang Lin ◽  
...  

Abstract Mitochondrial 12S rRNA A1555G and C1494T mutations are the major contributors to hearing loss. As patients with these mutations are sensitive to aminoglycosides, mutational screening for 12S rRNA is therefore recommended before the use of aminoglycosides. Most recently, we developed a novel multiplex allele-specific PCR (MAS-PCR) that can be used for detecting A1555G and C1494T mutations. In the present study, we employed this MAS-PCR to screen the 12S rRNA mutations in 500 deaf patients and 300 controls from 5 community hospitals. After PCR and electrophoresis, two patients with A1555G and one patient with C1494T were identified, this was consistent with Sanger sequence results. We further traced the origin of three Chinese pedigrees. Clinical evaluation revealed variable phenotypes of hearing loss including severity, age at onset and audiometric configuration in these patients. Sequence analysis of the mitochondrial genomes from matrilineal relatives suggested the presence of three evolutionarily conserved mutations: tRNACys T5802C, tRNALys A8343G and tRNAThr G15930A, which may result the failure in tRNAs metabolism and lead to mitochondrial dysfunction that was responsible for deafness. However, the lack of any functional variants in GJB2, GJB3, GJB6 and TRMU suggested that nuclear genes may not play active roles in deafness expression. Hence, aminoglycosides and mitochondrial genetic background may contribute to the clinical expression of A1555G/C1494T-induced deafness. Our data indicated that the MAS-PCR was a fast, convenience method for screening the 12S rRNA mutations, which was useful for early detection and prevention of mitochondrial deafness.


1996 ◽  
Vol 75 (05) ◽  
pp. 757-759 ◽  
Author(s):  
Rainer Blasczyk ◽  
Markus Ritter ◽  
Christian Thiede ◽  
Jenny Wehling ◽  
Günter Hintz ◽  
...  

SummaryResistance to activated protein C is the most common hereditary cause for thrombosis and significantly linked to factor V Leiden. In this study, primers were designed to identify the factor V mutation by allele-specific PCR amplification. 126 patients with thromboembolic events were analysed using this technique, PCR-RFLP and direct sequencing. The concordance between these techniques was 100%. In 27 patients a heterozygous factor VGln506 mutation was detected, whereas one patient with recurrent thromboembolism was homozygous for the point mutation. Due to its time- and cost-saving features allele-specific amplification should be considered for screening of factor VGln506.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhengjie Chen ◽  
Dengguo Tang ◽  
Jixing Ni ◽  
Peng Li ◽  
Le Wang ◽  
...  

Abstract Background Maize is one of the most important field crops in the world. Most of the key agronomic traits, including yield traits and plant architecture traits, are quantitative. Fine mapping of genes/ quantitative trait loci (QTL) influencing a key trait is essential for marker-assisted selection (MAS) in maize breeding. However, the SNP markers with high density and high polymorphism are lacking, especially kompetitive allele specific PCR (KASP) SNP markers that can be used for automatic genotyping. To date, a large volume of sequencing data has been produced by the next generation sequencing technology, which provides a good pool of SNP loci for development of SNP markers. In this study, we carried out a multi-step screening method to identify kompetitive allele specific PCR (KASP) SNP markers based on the RNA-Seq data sets of 368 maize inbred lines. Results A total of 2,948,985 SNPs were identified in the high-throughput RNA-Seq data sets with the average density of 1.4 SNP/kb. Of these, 71,311 KASP SNP markers (the average density of 34 KASP SNP/Mb) were developed based on the strict criteria: unique genomic region, bi-allelic, polymorphism information content (PIC) value ≥0.4, and conserved primer sequences, and were mapped on 16,161 genes. These 16,161 genes were annotated to 52 gene ontology (GO) terms, including most of primary and secondary metabolic pathways. Subsequently, the 50 KASP SNP markers with the PIC values ranging from 0.14 to 0.5 in 368 RNA-Seq data sets and with polymorphism between the maize inbred lines 1212 and B73 in in silico analysis were selected to experimentally validate the accuracy and polymorphism of SNPs, resulted in 46 SNPs (92.00%) showed polymorphism between the maize inbred lines 1212 and B73. Moreover, these 46 polymorphic SNPs were utilized to genotype the other 20 maize inbred lines, with all 46 SNPs showing polymorphism in the 20 maize inbred lines, and the PIC value of each SNP was 0.11 to 0.50 with an average of 0.35. The results suggested that the KASP SNP markers developed in this study were accurate and polymorphic. Conclusions These high-density polymorphic KASP SNP markers will be a valuable resource for map-based cloning of QTL/genes and marker-assisted selection in maize. Furthermore, the method used to develop SNP markers in maize can also be applied in other species.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 982
Author(s):  
Zhiliang Xiao ◽  
Congcong Kong ◽  
Fengqing Han ◽  
Limei Yang ◽  
Mu Zhuang ◽  
...  

Cabbage (Brassica oleracea) is an important vegetable crop that is cultivated worldwide. Previously, we reported the identification of two dominant complementary hybrid lethality (HL) genes in cabbage that could result in the death of hybrids. To avoid such losses in the breeding process, we attempted to develop molecular markers to identify HL lines. Among 54 previous mapping markers closely linked to BoHL1 or BoHL2, only six markers for BoHL2 were available in eight cabbage lines (two BoHL1 lines; three BoHL2 lines; three lines without BoHL); however, they were neither universal nor user-friendly in more inbred lines. To develop more accurate markers, these cabbage lines were resequenced at an ~20× depth to obtain more nucleotide variations in the mapping regions. Then, an InDel in BoHL1 and a single-nucleotide polymorphism (SNP) in BoHL2 were identified, and the corresponding InDel marker MBoHL1 and the competitive allele-specific PCR (KASP) marker KBoHL2 were developed and showed 100% accuracy in eight inbred lines. Moreover, we identified 138 cabbage lines using the two markers, among which one inbred line carried BoHL1 and 11 inbred lines carried BoHL2. All of the lethal line genotypes obtained with the two markers matched the phenotype. Two markers were highly reliable for the rapid identification of HL genes in cabbage.


2007 ◽  
Vol 71 (6) ◽  
pp. 569-575 ◽  
Author(s):  
S Giroux ◽  
A Dubé-Linteau ◽  
G Cardinal ◽  
Y Labelle ◽  
N Laflamme ◽  
...  

2014 ◽  
Vol 57 (7) ◽  
pp. 961-965 ◽  
Author(s):  
LingHui Zhang ◽  
Zhuo Tang

Sign in / Sign up

Export Citation Format

Share Document