Nanomaterials and Biopolymers for the Remediation of Polluted Sites

2022 ◽  
pp. 329-341
Author(s):  
Minchitha K. Umesha ◽  
Sadhana Venkatesh ◽  
Swetha Seshagiri
Keyword(s):  
2021 ◽  
Vol 13 (14) ◽  
pp. 7652
Author(s):  
Giuseppe Cavallo ◽  
Chiara Lorini ◽  
Giuseppe Garamella ◽  
Guglielmo Bonaccorsi

Moderate or severe food insecurity affect 2 billion people worldwide. The four pillars of food security (availability, access, use and stability) are in danger due to the impact of climatic and anthropogenic factors which impact on the food system. Novel foods, like seaweeds, have the potential to increase food yields so that to contribute in preventing or avoiding future global food shortages. The purpose of this systematic review was to assess microbiological, chemical, physical, and allergenic risks associated with seaweed consumption. Four research strings have been used to search for these risks. Preferred Reporting Item for Systematic Reviews and Meta-analysis (PRISMA) guidelines were applied. Finally, 39 articles met the selected criteria. No significant hazards for microbiological, allergenic, and physical risks were detected. Regarding chemical risk, algae can accumulate various heavy metals, especially when harvested in polluted sites. Cultivating seaweeds in a controlled environment allows to avoid this risk. Periodic checks will be necessary on the finished products to monitor heavy metals levels. Since the consumption of algae seems to be on the rise everywhere, it seems to be urgent that food control authorities establish the safety levels to which eating algae does not represent any risk for human health.


2006 ◽  
Vol 61 (7-8) ◽  
pp. 553-559 ◽  
Author(s):  
Evgenia Vasileva-Tonkova ◽  
Danka Galabova ◽  
Emilia Stoimenova ◽  
Zdravko Lalchev

The newly isolated from industrial wastewater Pseudomonas fluorescens strain HW-6 produced glycolipid biosurfactants at high concentrations (1.4-2.0 g l-1) when grown on hexadecane as a sole carbon source. Biosurfactants decreased the surface tension of the air/ water interface by 35 mN m-1 and possessed a low critical micelle concentration value of 20 mg l-1, which indicated high surface activity. They efficiently emulsified aromatic hydrocarbons, kerosene, n-paraffins and mineral oils. Biosurfactant production contributed to a significant increase in cell hydrophobicity correlated with an increased growth of the strain on hexadecane. The results suggested that the newly isolated strain of Ps. fluorescens and produced glycolipid biosurfactants with effective surface and emulsifying properties are very promising and could find application for bioremediation of hydrocarbon-polluted sites.


Microbiology ◽  
2014 ◽  
Vol 83 (5) ◽  
pp. 577-584 ◽  
Author(s):  
I. P. Solyanikova ◽  
I. V. Robota ◽  
D. M. Mazur ◽  
A. T. Lebedev ◽  
L. A. Golovleva
Keyword(s):  

2001 ◽  
Vol 67 (2) ◽  
pp. 769-773 ◽  
Author(s):  
Murielle Roux ◽  
Géraldine Sarret ◽  
Isabelle Pignot-Paintrand ◽  
Marc Fontecave ◽  
Jacques Coves

ABSTRACT Ralstonia metallidurans CH34 (formerlyAlcaligenes eutrophus CH34) is a soil bacterium characteristic of metal-contaminated biotopes, as it is able to grow in the presence of a variety of heavy metals. R. metalliduransCH34 is reported now to resist up to 6 mM selenite and to reduce selenite to elemental red selenium as shown by extended X-ray absorption fine-structure analysis. Growth kinetics analysis suggests an adaptation of the cells to the selenite stress during the lag-phase period. Depending on the culture conditions, the medium can be completely depleted of selenite. Selenium accumulates essentially in the cytoplasm as judged from electron microscopy and energy-dispersive X-ray analysis. Elemental selenium, highly insoluble, represents a nontoxic storage form for the bacterium. The ability of R. metallidurans CH34 to reduce large amounts of selenite may be of interest for bioremediation processes targeting selenite-polluted sites.


2009 ◽  
Vol 31 (2) ◽  
Author(s):  
Mauricio Laterca Martins ◽  
Gabriela Tomas Jerônimo ◽  
Fernanda Bachmann ◽  
Juliane Araujo Greiner-Goulart ◽  
Ayrton Adão Schimitt-Junior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document