scholarly journals Mobilization of Selenite by Ralstonia metallidurans CH34

2001 ◽  
Vol 67 (2) ◽  
pp. 769-773 ◽  
Author(s):  
Murielle Roux ◽  
Géraldine Sarret ◽  
Isabelle Pignot-Paintrand ◽  
Marc Fontecave ◽  
Jacques Coves

ABSTRACT Ralstonia metallidurans CH34 (formerlyAlcaligenes eutrophus CH34) is a soil bacterium characteristic of metal-contaminated biotopes, as it is able to grow in the presence of a variety of heavy metals. R. metalliduransCH34 is reported now to resist up to 6 mM selenite and to reduce selenite to elemental red selenium as shown by extended X-ray absorption fine-structure analysis. Growth kinetics analysis suggests an adaptation of the cells to the selenite stress during the lag-phase period. Depending on the culture conditions, the medium can be completely depleted of selenite. Selenium accumulates essentially in the cytoplasm as judged from electron microscopy and energy-dispersive X-ray analysis. Elemental selenium, highly insoluble, represents a nontoxic storage form for the bacterium. The ability of R. metallidurans CH34 to reduce large amounts of selenite may be of interest for bioremediation processes targeting selenite-polluted sites.

2005 ◽  
Vol 71 (5) ◽  
pp. 2331-2337 ◽  
Author(s):  
Géraldine Sarret ◽  
Laure Avoscan ◽  
Marie Carrière ◽  
Richard Collins ◽  
Nicolas Geoffroy ◽  
...  

ABSTRACT Ralstonia metallidurans CH34, a soil bacterium resistant to a variety of metals, is known to reduce selenite to intracellular granules of elemental selenium (Se0). We have studied the kinetics of selenite (SeIV) and selenate (SeVI) accumulation and used X-ray absorption spectroscopy to identify the accumulated form of selenate, as well as possible chemical intermediates during the transformation of these two oxyanions. When introduced during the lag phase, the presence of selenite increased the duration of this phase, as previously observed. Selenite introduction was followed by a period of slow uptake, during which the bacteria contained Se0 and alkyl selenide in equivalent proportions. This suggests that two reactions with similar kinetics take place: an assimilatory pathway leading to alkyl selenide and a slow detoxification pathway leading to Se0. Subsequently, selenite uptake strongly increased (up to 340 mg Se per g of proteins) and Se0 was the predominant transformation product, suggesting an activation of selenite transport and reduction systems after several hours of contact. Exposure to selenate did not induce an increase in the lag phase duration, and the bacteria accumulated approximately 25-fold less Se than when exposed to selenite. SeIV was detected as a transient species in the first 12 h after selenate introduction, Se0 also occurred as a minor species, and the major accumulated form was alkyl selenide. Thus, in the present experimental conditions, selenate mostly follows an assimilatory pathway and the reduction pathway is not activated upon selenate exposure. These results show that R. metallidurans CH34 may be suitable for the remediation of selenite-, but not selenate-, contaminated environments.


2004 ◽  
Vol 84 (2) ◽  
pp. 171-175 ◽  
Author(s):  
C. R. Christensen ◽  
J. N. Cutler ◽  
D. A. Christensen

Synchrotron-based X-ray absorption near edge structure (XANES) spectroscopy is a relatively new technique within the life sciences. XANES has been utilized to identify the location, oxidation state and spatial distribution of heavy metal elements in plants , neurons, blood and DNA, but has not been widely used in the animal sciences. Selenium content in animal feeds is monitored, as both selenium deficiencies and toxicities are associated with physiological disorders. Selenium is available as an animal feed in both inorganic and organic states. The bioavailability of selenium species has been tested in numerous animal trials; however, a simple, non-destructive test for selenium speciation is not available. The objective of this study was to determine whether XANES spectroscopy could be used to determine the selenium oxidation state found in various commercial animal feed products. A comparison of absorption spectra indicated that the animal mineral supplements contained an organoselenium or selenite. The processed animal feeds had a spectral profile similar to that of elemental selenium. Further experiments are necessary to determine the implication of selenium speciation on animal physiology. Key words: Selenium speciation, mineral supplements, ruminants, non-ruminants, synchrotron, XANES, X-ray


1966 ◽  
Vol 12 (4) ◽  
pp. 703-714 ◽  
Author(s):  
R. G. L. McCready ◽  
J. N. Campbell ◽  
J. I. Payne

When Salmonella Heidelberg is grown in 0.1% w/v Na2SeO3 and examined microscopically during growth, two morphological changes can be seen. Red intracellular granules are seen in most of the population within 10 to 12 hours, and organisms containing granules elongate without cell division. The intracellular granules produced by S. heidelberg in selenite broth have been identified by X-ray analysis as amorphous red selenium. The intermediate in the conversion of selenite to elemental selenium has been trapped and identified as divalent selenium ion. Growth studies have shown that selenite toxicity is primarily associated with the lag phase of growth, and also that the divalent intermediate is more toxic than the tetravalent precursor.


2011 ◽  
Vol 8 (6) ◽  
pp. 543 ◽  
Author(s):  
Soo In Yang ◽  
John R. Lawrence ◽  
George D. W. Swerhone ◽  
Ingrid J. Pickering

Environmental contextElevated levels of selenium and arsenic in the environment as a result of anthropogenic activities are creating significant concerns for the health of aquatic ecosystems. How biofilms, or aquatic microbial communities, interact with and chemically modify selenium and arsenic species has been examined. The results demonstrate that selenium and arsenic induce structural changes in biofilms, and concurrently undergo extensive biotransformation, in most cases to less bioavailable species. AbstractArsenic and selenium are both elements of concern especially when released into the environment by anthropogenic activity. Biofilms, or communities of microorganisms, can play important roles in biotransforming elements to less toxic chemical forms. This study used novel tools to characterise the fate of oxyanions (selenate, selenite, arsenate or arsenite) in multi-species biofilms inoculated from a source receiving coal mining effluent. Confocal laser scanning microscopy (CLSM) demonstrated a distinct biofilm morphology at elevated oxyanion concentrations. Selenium and arsenic K near-edge X-ray absorption spectroscopy (XAS) showed biofilm biotransformation of oxyanions; extended X-ray absorption fine structure (EXAFS) confirmed elemental selenium as a product. Micro X-ray fluorescence imaging combined with CLSM revealed highly localised reduced selenium species in the biofilm. Isolation and partial 16S rRNA gene sequencing suggested four principle bacterial genera were responsible. Biofilms can both detoxify and sequester selenium and arsenic, playing critical roles in their fate and effects in aquatic environments.


Author(s):  
G. Cliff ◽  
M.J. Nasir ◽  
G.W. Lorimer ◽  
N. Ridley

In a specimen which is transmission thin to 100 kV electrons - a sample in which X-ray absorption is so insignificant that it can be neglected and where fluorescence effects can generally be ignored (1,2) - a ratio of characteristic X-ray intensities, I1/I2 can be converted into a weight fraction ratio, C1/C2, using the equationwhere k12 is, at a given voltage, a constant independent of composition or thickness, k12 values can be determined experimentally from thin standards (3) or calculated (4,6). Both experimental and calculated k12 values have been obtained for K(11<Z>19),kα(Z>19) and some Lα radiation (3,6) at 100 kV. The object of the present series of experiments was to experimentally determine k12 values at voltages between 200 and 1000 kV and to compare these with calculated values.The experiments were carried out on an AEI-EM7 HVEM fitted with an energy dispersive X-ray detector.


Author(s):  
R.F. Egerton

SIGMAL is a short (∼ 100-line) Fortran program designed to rapidly compute cross-sections for L-shell ionization, particularly the partial crosssections required in quantitative electron energy-loss microanalysis. The program is based on a hydrogenic model, the L1 and L23 subshells being represented by scaled Coulombic wave functions, which allows the generalized oscillator strength (GOS) to be expressed analytically. In this basic form, the model predicts too large a cross-section at energies near to the ionization edge (see Fig. 1), due mainly to the fact that the screening effect of the atomic electrons is assumed constant over the L-shell region. This can be remedied by applying an energy-dependent correction to the GOS or to the effective nuclear charge, resulting in much closer agreement with experimental X-ray absorption data and with more sophisticated calculations (see Fig. 1 ).


Author(s):  
Zenji Horita ◽  
Ryuzo Nishimachi ◽  
Takeshi Sano ◽  
Minoru Nemoto

Absorption correction is often required in quantitative x-ray microanalysis of thin specimens using the analytical electron microscope. For such correction, it is convenient to use the extrapolation method[l] because the thickness, density and mass absorption coefficient are not necessary in the method. The characteristic x-ray intensities measured for the analysis are only requirement for the absorption correction. However, to achieve extrapolation, it is imperative to obtain data points more than two at different thicknesses in the identical composition. Thus, the method encounters difficulty in analyzing a region equivalent to beam size or the specimen with uniform thickness. The purpose of this study is to modify the method so that extrapolation becomes feasible in such limited conditions. Applicability of the new form is examined by using a standard sample and then it is applied to quantification of phases in a Ni-Al-W ternary alloy.The earlier equation for the extrapolation method was formulated based on the facts that the magnitude of x-ray absorption increases with increasing thickness and that the intensity of a characteristic x-ray exhibiting negligible absorption in the specimen is used as a measure of thickness.


Author(s):  
V. Serin ◽  
K. Hssein ◽  
G. Zanchi ◽  
J. Sévely

The present developments of electron energy analysis in the microscopes by E.E.L.S. allow an accurate recording of the spectra and of their different complex structures associated with the inner shell electron excitation by the incident electrons (1). Among these structures, the Extended Energy Loss Fine Structures (EXELFS) are of particular interest. They are equivalent to the well known EXAFS oscillations in X-ray absorption spectroscopy. Due to the EELS characteristic, the Fourier analysis of EXELFS oscillations appears as a promising technique for the characterization of composite materials, the major constituents of which are low Z elements. Using EXELFS, we have developed a microstructural study of carbon fibers. This analysis concerns the carbon K edge, which appears in the spectra at 285 eV. The purpose of the paper is to compare the local short range order, determined by this way in the case of Courtauld HTS and P100 ex-polyacrylonitrile carbon fibers, which are high tensile strength (HTS) and high modulus (HM) fibers respectively.


Author(s):  
E. C. Buck ◽  
N. L. Dietz ◽  
J. K. Bates

Operations at former weapons processing facilities in the U. S. have resulted in a large volume of radionuclidecontaminated soils and residues. In an effort to improve remediation strategies and meet environmental regulations, radionuclide-bearing particles in contaminant soils from Fernald in Ohio and the Rocky Flats Plant (RFP) in Colorado have been characterized by electron microscopy. The object of these studies was to determine the form of the contaminant radionuclide, so that it properties could be established [1]. Physical separation and radiochemical analysis determined that uranium contamination at Fernald was not present exclusively in any one size/density fraction [2]. The uranium-contamination resulted from aqueous and solid product spills, air-borne dust particles, and from the operation of an incinerator on site. At RFP the contamination was from the incineration of Pu-bearing materials. Further analysis by x-ray absorption spectroscopy indicated that the majority of the uranium was in the 6+ oxidation state [3].


Author(s):  
H. Ade ◽  
B. Hsiao ◽  
G. Mitchell ◽  
E. Rightor ◽  
A. P. Smith ◽  
...  

We have used the Scanning Transmission X-ray Microscope at beamline X1A (X1-STXM) at Brookhaven National Laboratory (BNL) to acquire high resolution, chemical and orientation sensitive images of polymeric samples as well as point spectra from 0.1 μm areas. This sensitivity is achieved by exploiting the X-ray Absorption Near Edge Structure (XANES) of the carbon K edge. One of the most illustrative example of the chemical sensitivity achievable is provided by images of a polycarbonate/pol(ethylene terephthalate) (70/30 PC/PET) blend. Contrast reversal at high overall contrast is observed between images acquired at 285.36 and 285.69 eV (Fig. 1). Contrast in these images is achieved by exploring subtle differences between resonances associated with the π bonds (sp hybridization) of the aromatic groups of each polymer. PET has a split peak associated with these aromatic groups, due to the proximity of its carbonyl groups to its aromatic rings, whereas PC has only a single peak.


Sign in / Sign up

Export Citation Format

Share Document