A numerically stable, finite memory, fast array recursive least squares filter for broadband active noise control

2015 ◽  
Vol 30 (1) ◽  
pp. 31-45 ◽  
Author(s):  
S. van Ophem ◽  
A. P. Berkhoff
1997 ◽  
Vol 119 (2) ◽  
pp. 318-320 ◽  
Author(s):  
Hisashi Sano ◽  
Shuichi Adachi ◽  
Hideki Kasuya

The purpose of this paper is to propose an alternative approach to active noise control (ANC) using the least squares lattice (LSL) algorithm. Typically, in ANC applications, the least-mean-square (LMS) algorithm has been used because of its simplicity. However, the LMS algorithm has the disadvantage of slow convergence speed in the case of broadband noise, such as the road noise present in the passenger compartment of automobiles traveling on rough road surfaces. In order to solve this problem, the LSL algorithm for ANC is considered. By computer simulation using actual car data, the LSL algorithm proves to be more effective than the LMS one.


2009 ◽  
Vol 28 (3) ◽  
pp. 205-215 ◽  
Author(s):  
R. K. Raja Ahmad ◽  
M. O. Tokhi

This paper presents the development of a self-tuning controller design of minimum effort active noise control (ANC) for feedforward single-input single-output (SISO) architecture which includes the feedback acoustic path in the controller formulation. The controller design law is derived for suitable self-tuning implementation and the self-tuning controller is evaluated in a realistically constructed ANC simulation environment. The self-tuning controller design involves a two-stage identification process where the controller is replaced by a switch. This switch is closed and opened in sequence generating two transfer functions which are then used in constructing the controller specified by a minimum effort control law. The implementation requires an estimate of the secondary path transfer function which can be identified either online or offline. The controller design and implementation are evaluated in terms of the level of cancellation at the observer through simulation studies for various values of modified effort weighting parameter in the range 0 ≤ γ ≤ 1. It was found that the optimal controller designed using this technique which is constrained only by the accuracy of the two models identified using recursive least squares algorithm, yields good cancellation level.


2019 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Ran Wang ◽  
Xiaolin Wang ◽  
Jingwei Liu ◽  
Jun Yang

When active noise control (ANC) is applied to acquire a ‘quiet zone’, it may produce an increase in the sound power outside the quiet zone and a change in the primary sound field, which are undesirable in anti-detection and personal audio. To obtain a large noise reduction in the control zone and a small increase of sound power outside the control zone, three wideband ANC algorithms are proposed based on the acoustic contrast control (ACC), least-squares (LS), and least-squares with acoustic contrast control (SFR-ACC) algorithms. With a loudspeaker array as the secondary source, dual-zone ANC with directivity, which realizes noise reduction in one zone without changing the sound power in the other zone, is achieved. Compared with the traditional LS algorithm, the three algorithms proposed in this paper can not only realize that the sound power outside the control zone is increased by less than 1 dB, but also reduce the noise in the control zone by more than 10 dB, which provides a new solution to multi-zone ANC research.


2019 ◽  
Vol 9 (6) ◽  
pp. 1250
Author(s):  
Jihui Zhang ◽  
Thushara Abhayapala ◽  
Wen Zhang ◽  
Prasanga Samarasinghe

In this paper, we investigate the maximum active noise control performance over a three-dimensional (3-D) spatial space, for a given set of secondary sources in a particular environment. We first formulate the spatial active noise control (ANC) problem in a 3-D room. Then we discuss a wave-domain least squares method by matching the secondary noise field to the primary noise field in the wave domain. Furthermore, we extract the subspace from wave-domain coefficients of the secondary paths and propose a subspace method by matching the secondary noise field to the projection of primary noise field in the subspace. Simulation results demonstrate the effectiveness of the proposed algorithms by comparison between the wave-domain least squares method and the subspace method, more specifically the energy of the loudspeaker driving signals, noise reduction inside the region, and residual noise field outside the region. We also investigate the ANC performance under different loudspeaker configurations and noise source positions.


Sign in / Sign up

Export Citation Format

Share Document