Where Does the Lithium Go? - A Study of the Precipitates in the Stir Zone of a Friction Stir Weld in a Li-containing 2xxx Series Al Alloy

2010 ◽  
pp. NA-NA ◽  
Author(s):  
Jiancun Rao ◽  
Eric J. Payton ◽  
Christoph Somsen ◽  
Klaus Neuking ◽  
Gunther Eggeler ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1115 ◽  
Author(s):  
Yang Zheng ◽  
Xiaomeng Pan ◽  
Yinglei Ma ◽  
Shuming Liu ◽  
Libin Zang ◽  
...  

Friction stir welding (FSW) with a Zr interlayer was employed to join dissimilar alloys of 6061 Al and AZ31 Mg. The microstructures of Al/Mg and Al/Zr/Mg joints were investigated by optical microscopy (OM), scanning electron microscopy (SEM), and energy dispersive X-ray spectrometer (EDS). The results showed that the central part of the Zr interlayer was smashed and intermixed with the base materials in the stir zone, whereas the undamaged part remained stable at the Al/Mg interface. The formation of Al–Mg intermetallic compounds (IMCs) was suppressed by the Zr interlayer due to its synergetic effects of chemical modification and thermal barrier. The electrochemical measurements revealed a differentiated corrosion behavior for each joint, where the corrosion rate of representative regions increased in the order of Al alloy < Mg alloy < heat-affected zone < stir zone. The immersion tests indicated an enhancement in corrosion resistance for the Al/Zr/Mg joint compared with the Al/Mg joint, which is owing to the mitigated galvanic corrosion between the base materials by the Zr interlayer.


2008 ◽  
Vol 580-582 ◽  
pp. 299-302 ◽  
Author(s):  
Kunitaka Masaki ◽  
Yutaka S. Sato ◽  
Masakatsu Maeda ◽  
Hiroyuki Kokawa

Friction stir welding (FSW) makes the stir zone with fine recrystallized grain structure. The recrystallized grains would be formed through dynamic recrystallization at high temperatures and high strain-rate. The present study experimentally simulated the dynamically recrystallized microstructure of a friction stir welded Al alloy 1050 produced at 600 rpm rotation and 100 mm/min travel speed, using combination of the plane-strain compression at various strain rates and the subsequent cooling along the cooling cycle of FSW. The equiaxed grain structures similar to the microstructure of the stir zone were produced at strain rates between 0.1 and 32 s-1; the grain size decreased with increasing strain rate. Strain rate during the FSW could be estimated to be about 1.8 s-1. The present study suggests that plane-strain compression test can simulate the recrystallized grain structure of the friction stir welds.


2009 ◽  
Vol 23 (6) ◽  
pp. 403-410 ◽  
Author(s):  
Mitsuo Fujimoto ◽  
Shinji Koga ◽  
Natsumi Abe ◽  
Yutaka S. Sato ◽  
Hiroyuki Kokawa

2007 ◽  
Vol 25 (4) ◽  
pp. 553-559 ◽  
Author(s):  
Mitsuo FUJIMOTO ◽  
Shinji KOGA ◽  
Natsumi ABE ◽  
Yutaka SATO S. ◽  
Hiroyuki KOKAWA

2016 ◽  
Vol 838-839 ◽  
pp. 326-331 ◽  
Author(s):  
Toru Nagaoka ◽  
Yoshihisa Kimoto ◽  
Hiroyuki Watanabe ◽  
Masao Fukusumi ◽  
Yoshiaki Morisada ◽  
...  

The surface of body-centred cubic Fe-7Al (mass%) alloy plate was successfully modified by friction stir processing with SiC particles addition. The stir zone with SiC addition had an average grain size of 5.9 μm, smaller than that of 10.1 μm in the stir zone without SiC addition. SiC particles introduced by friction stir processing were converted to fine Fe3AlCx particles by reaction with the ferrite matrix. The hardness near the surface of the stir zone was significantly increased to 351 HV by introduction of particles, compared to the hardness of 200 HV in the stir zone without particles addition. The dispersed particles also contributed to suppression of grain growth of the matrix at elevated temperature.


2005 ◽  
Vol 59 (23) ◽  
pp. 2948-2952 ◽  
Author(s):  
Yan-hua Zhao ◽  
San-bao Lin ◽  
Lin Wu ◽  
Fu-xing Qu

2018 ◽  
Vol 28 (12) ◽  
pp. 2410-2418 ◽  
Author(s):  
U. DONATUS ◽  
G.E. THOMPSON ◽  
M.I. MOMOH ◽  
N.B. MALEDI ◽  
I-L. TSAI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document