galvanic corrosion
Recently Published Documents


TOTAL DOCUMENTS

1222
(FIVE YEARS 300)

H-INDEX

43
(FIVE YEARS 8)

2021 ◽  
Vol 8 ◽  
Author(s):  
Hongzhou Peng ◽  
Wei Wang ◽  
Haomiao Jiang ◽  
Rui Zan ◽  
Yu Sun ◽  
...  

With recent progress in clinical trials and scale-up applications of biodegradable magnesium-based implants, the scenarios of transplanting biodegradable Mg with other non-degradable metals may occur inevitably. Galvanic corrosion appears between two metallic implants with different electrochemical potentials and leads to accelerated degradation. However, a quantitative measurement on the galvanic corrosion of Mg in contact with other metallic implants has not been conducted. Here we study the corrosion behaviors and mechanical attenuation of high purity magnesium (Mg)in contact with stainless steel (316L), pure titanium (TA2), and magnesium alloy (AZ91) respectively to form different galvanic couples in simulated body fluids. The results show that all of these three heterogeneous metal pairs accelerate the degradation of high purity Mg to different degrees, yielding declined tensile strength and mechanical failure after 4 days of immersion. Our observations alert the potential risk of co-implanting different metallic devices in clinical trials.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1542
Author(s):  
Diana-Petronela Burduhos-Nergis ◽  
Dumitru-Doru Burduhos-Nergis ◽  
Costica Bejinariu

Worker safety is one of the main aspects to be taken into account in any activity carried out at work. When we talk about the safety of the worker at activities carried out at height, the condition and characteristics of the personal protective equipment against falling from a height are one of the main causes of work accidents resulting in serious injuries or death. Carabiners are the main components of the safety system; their role is to connect the other components of the system or to make the connection between the system and the anchor point. Therefore, to be used safely, the carabiners’ material must have high corrosion resistance in different environments. This paper is part of a complex study that aims to improve the corrosion properties of carbon steel used in the manufacture of carabiners. Previous studies have shown that the corrosion resistance of carbon steel in various corrosive environments has been improved by the deposition of different types of phosphate layers, as well as other subsequently deposited layers. The aim of this paper is to study the galvanic corrosion evaluation between different galvanic couples (duralumin-coated samples, aluminium bronze-coated samples, and carbon steel-coated samples) tested in three different corrosive media. Moreover, the study approaches for the first time the galvanic corrosion of systems that can be formed between the materials used in the manufacture of carabiners. Accordingly, it was observed that, overall, the samples coated with a Zn phosphate layer exhibited the best performance in all the corrosive environments (saltwater and fire extinguishing solution).


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3298
Author(s):  
Hamid Al-Abboodi ◽  
Huiqing Fan ◽  
Ibtihal A. Mahmood ◽  
Mohammed Al-Bahrani

A high-velocity oxygen fuel (HVOF) system was employed to prepare a Fe49.7Cr18Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 amorphous coating on mild steel. The electrochemical behavior of the resultant coatings, namely as-sprayed coating and vacuum heat-treated coating (at 650 °C and 800 °C), were investigated in a 3.5% NaCl solution at variable temperatures using scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, optical microscopy (OM), and XRD diffraction. Moreover, COMSOL Multiphysics version 5.5 software were employed for predicting the galvanic corrosion of amorphous material immersed in an aqueous NaCl solution, using the software finite element kit. The experiments demonstrated that the coatings’ pitting resistance was significantly affected by temperature. The results also showed that temperature affected the pitting corrosion rate and changed the shape of the pits. However, the changes were not as extreme as those observed in stainless steel. Furthermore, there was no significant difference between the as-sprayed coating and the vacuum-heat-treated coating at 650 °C. At low NaCl concentrations at and temperatures below the critical pitting temperature, the resulting pits were significantly small with a hemisphere-like. By contrast, at a higher NaCl concentration at 70 °C, particularly in the case of heating at 650 °C, the pits appearing on the Fe-based amorphous coating were vast and sometimes featured a lacy cover.


2021 ◽  
pp. 532-544
Author(s):  
S.Y. Guo ◽  
Z.D. Liu ◽  
B.K. Li ◽  
L. Chen ◽  
H.R. Ma ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3144
Author(s):  
Fatma Bensalah ◽  
Julien Pézard ◽  
Naoufel Haddour ◽  
Mohsen Erouel ◽  
François Buret ◽  
...  

The development of high-performance anode materials is one of the greatest challenges for the practical implementation of Microbial Fuel Cell (MFC) technology. Copper (Cu) has a much higher electrical conductivity than carbon-based materials usually used as anodes in MFCs. However, it is an unsuitable anode material, in raw state, for MFC application due to its corrosion and its toxicity to microorganisms. In this paper, we report the development of a Cu anode material coated with a corrosion-resistant composite made of Polydimethylsiloxane (PDMS) doped with carbon nanofiber (CNF). The surface modification method was optimized for improving the interfacial electron transfer of Cu anodes for use in MFCs. Characterization of CNF-PDMS composites doped at different weight ratios demonstrated that the best electrical conductivity and electrochemical properties are obtained at 8 % weight ratio of CNF/PDMS mixture. Electrochemical characterization showed that the corrosion rate of Cu electrode in acidified solution decreased from (17 ± 6) × 103 μm y−1 to 93 ± 23 μm y−1 after CNF-PDMS coating. The performance of Cu anodes coated with different layer thicknesses of CNF-PDMS (250 µm, 500 µm, and 1000 µm), was evaluated in MFC. The highest power density of 70 ± 8 mW m−2 obtained with 500 µm CNF-PDMS was about 8-times higher and more stable than that obtained through galvanic corrosion of unmodified Cu. Consequently, the followed process improves the performance of Cu anode for MFC applications.


Author(s):  
Roy López-Sesenes ◽  
Jose Gonzalo González-Rodríguez ◽  
José Gerardo Vera-Dimas ◽  
Rene Guardian-Tapia ◽  
Luis Cisneros-Villalobos

The effect of the galvanic corrosion process taking place between aluminium alloy (AA2024-T3) and carbon fiber reinforced plastic (CFRP) immersed in 0.05 M NaCl was studied using organic and inorganic compounds as corrosion inhibitors. Electrochemical approaches such as electrochemical noise analysis (ENA) and electrochemical impedance spectroscopy (EIS) were carried out to evaluate efficiencies of 1,2,4-triazole (C2H3N3) and cerium nitrate hexahydrate (Ce(NO3)3·6H2O) as corrosion inhibitors. The highest efficiency was reached for Ce(NO3)3.6H2O, with some improvement observed by adding C2H3N3 in a mixed inhibitor solution. The noise resistance (Rn) and polarization resistance (Rp) values calculated from ENA and EIS data showed almost identical behavior with different magni­tudes but similar trends. Adsorption isotherm models estimated with fractional surface coverage (q) parameter were fitted better to Langmuir model for C2H3N3 and Temkin model for Ce(NO3)3·6H2O. The calculated values of Gibbs free energy suggested physi­sorption and chemisorption as spontaneous interactions between a metal surface and both inhibitors. Energy-dispersive X-ray spectroscopy (EDS) was carried out before and after immersing AA2024-T3 in the electrolyte, identifying rich zones in copper with cerium deposited over it and confirming the presence of rare-earth oxide deposition and oxide film products. The EDS analysis for CFRP revealed the deposition of Ce and Al particles over its surface after immersion in the electrolyte, especially in the areas rich in carbon.


2021 ◽  
Vol 2080 (1) ◽  
pp. 012026
Author(s):  
Rabiatul Adawiyah Samsudin ◽  
Wei Yee Wong ◽  
Muhammad Firdaus Mohd Nazeri ◽  
Pramod K Singh ◽  
Rosli Othman ◽  
...  

Abstract The changes in microstructure and phase of tin-bismuth-copper (Sn-58Bi-xCu) were investigated after immersion in 3.5 wt. % sodium chloride (NaCl) at variations of Cu micro-alloying at 0.25, 0.50, 0.75, 1.00 and 1.25 wt. %. The morphological observation revealed that the long crystal grains of the Cu-rich phase were produced as the amount of Cu increased. The phase analysis shows that at 0.5 wt. % Cu additions, the intermetallic compound od Cu6Sn5 began to form and dominate the microstructure. After immersion in NaCl, a porous structure was seen covering the surface of the ternary solder, indicating the formation of a defective corrosion protection layer. The predominance of Cu6Sn5 is believed to boost the galvanic corrosion coupling potential of the ternary solder. As a result, the more electrochemically reactive phase was pushed to be eliminated during immersion in 3.5 wt.% NaCl solution. Thus the black spots were formed. The presence of Cu6Sn5 was seen to be detrimental to the electrochemical performance of Sn-58Bi-xCu.


Sign in / Sign up

Export Citation Format

Share Document