scholarly journals Grain Boundary Segregation in UFG Alloys Processed by Severe Plastic Deformation

2012 ◽  
Vol 14 (11) ◽  
pp. 968-974 ◽  
Author(s):  
Xavier Sauvage ◽  
Artur Ganeev ◽  
Yulia Ivanisenko ◽  
Nariman Enikeev ◽  
Maxim Murashkin ◽  
...  
2018 ◽  
Vol 59 (5) ◽  
pp. 822-828
Author(s):  
Wen Long Zhao ◽  
Dong Po Wang ◽  
Hua Dong Wang ◽  
Shi Cheng Ma ◽  
Yu Yi Wang ◽  
...  

Author(s):  
C.L. Briant

Grain boundary segregation is the process by which solute elements in a material diffuse to the grain boundaries, become trapped there, and increase their local concentration at the boundary over that in the bulk. As a result of this process this local concentration of the segregant at the grain boundary can be many orders of magnitude greater than the bulk concentration of the segregant. The importance of this problem lies in the fact that grain boundary segregation can affect many material properties such as fracture, corrosion, and grain growth.One of the best ways to study grain boundary segregation is with Auger electron spectroscopy. This spectroscopy is an extremely surface sensitive technique. When it is used to study grain boundary segregation the sample must first be fractured intergranularly in the high vacuum spectrometer. This fracture surface is then the one that is analyzed. The development of scanning Auger spectrometers have allowed researchers to first image the fracture surface that is created and then to perform analyses on individual grain boundaries.


2005 ◽  
Vol 903 ◽  
Author(s):  
Andrew Detor ◽  
Michael K. Miller ◽  
Christopher A. Schuh

AbstractAtom probe tomography is used to observe the solute distribution in electrodeposited nanocrystalline Ni-W alloys with three different grain sizes (3, 10, and 20 nm) and the results are compared with atomistic computer simulations. The presence of grain boundary segregation is confirmed by detailed analysis of composition fluctuations in both experimental and simulated structures, and its extent quantified by a frequency distribution analysis. In contrast to other nanocrystalline alloys, the present Ni-W alloys exhibit only a subtle amount of solute segregation to the intergranular regions. This finding is consistent with quantitative predictions for these alloys based upon a thermodynamic model of grain boundary segregation.


2011 ◽  
Vol 683 ◽  
pp. 69-79 ◽  
Author(s):  
Evgeny V. Naydenkin ◽  
Galina P. Grabovetskaya ◽  
Konstantin Ivanov

In this review the investigations of deformation process development are discussed which were carried out by tension and creep in the temperature range Т<0.4Tm (here Тm is the absolute melting point of material) for nanostructured metals produced by the methods of severe plastic deformation. The contribution of grain boundary sliding to the total deformation in the above temperature interval is also considered. An analysis is made of the effect of grain size and grain boundary state on the evolution of grain boundary sliding and cooperative grain boundary sliding in nanostructured metals.


2015 ◽  
Vol 160 (5) ◽  
pp. 204-208 ◽  
Author(s):  
Phillip Haslberger ◽  
Christoph Turk ◽  
Katharina Babinsky ◽  
Devrim Caliskanoglu ◽  
Helmut Clemens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document