Silver Nanotubes Networks with Ultra‐high Strain Limit as Reliable Flexible Transparent Electrode and Tactile Sensor

Author(s):  
Jingyuan Bu ◽  
Dongchen Tan ◽  
Nan Sun ◽  
Chengming Jiang ◽  
Qikun Li ◽  
...  
Author(s):  
Hisakazu Tajika ◽  
Satoshi Igi ◽  
Takahiro Sakimoto ◽  
Shigeru Endo ◽  
Seishi Tsuyama ◽  
...  

This paper presents the results of experimental studies focused on the strain capacity of X80 linepipe. A full-scale bending tests of X80 grade, 48″ high-strain linepipes pressurized to 60% SMYS were conducted to investigate the compressive strain limit and tensile strain limit. The tensile properties Y/T ratios and uniform elongation of the pipes had variety. Three of four pipes are high strain pipes and these Y/T ratios are intentionally low with manufacturing method. One of these high-strain pipe was girth welded in its longitudinal center to investigate the effect of girth weld to strain capacity. The other was set as a conventional pipe that have higher Y/T ratio to make comparative study. The compressive strain limit focused on the critical strain at the formation of local buckling on the compression side of bending. After pipe reaches its endurable maximum moment, one large developed wrinkle and some small wrinkles on the pipe surface during bending deformation were captured relatively well from observation and strain distribution measurement. The tensile strain limit is discussed from the viewpoint of competition of two fracture phenomena: ductile crack initiation/propagation from an artificial notch at the HAZ of the girth weld, and strain concentration and rupture in the base material at the tension (opposite) side of the local buckling position.


Author(s):  
A. Christou ◽  
J. V. Foltz ◽  
N. Brown

In general, all BCC transition metals have been observed to twin under appropriate conditions. At the present time various experimental reports of solid solution effects on BCC metals have been made. Indications are that solid solution effects are important in the formation of twins. The formation of twins in metals and alloys may be explained in terms of dislocation mechanisms. It has been suggested that twins are nucleated by the achievement of local stress-concentration of the order of 15 to 45 times the applied stress. Prietner and Leslie have found that twins in BCC metals are nucleated at intersections of (110) and (112) or (112) and (112) type of planes.In this paper, observations are reported of a transmission microscope study of the iron manganese series under conditions in which twins both were and were not formed. High strain rates produced by shock loading provided the appropriate deformation conditions. The workhardening mechanisms of one alloy (Fe - 7.37 wt% Mn) were studied in detail.


Author(s):  
J. Temple Black

The output of the ultramicrotomy process with its high strain levels is dependent upon the input, ie., the nature of the material being machined. Apart from the geometrical constraints offered by the rake and clearance faces of the tool, each material is free to deform in whatever manner necessary to satisfy its material structure and interatomic constraints. Noncrystalline materials appear to survive the process undamaged when observed in the TEM. As has been demonstrated however microtomed plastics do in fact suffer damage to the top and bottom surfaces of the section regardless of the sharpness of the cutting edge or the tool material. The energy required to seperate the section from the block is not easily propogated through the section because the material is amorphous in nature and has no preferred crystalline planes upon which defects can move large distances to relieve the applied stress. Thus, the cutting stresses are supported elastically in the internal or bulk and plastically in the surfaces. The elastic strain can be recovered while the plastic strain is not reversible and will remain in the section after cutting is complete.


Sign in / Sign up

Export Citation Format

Share Document