Theoretical Evaluation of Strengthening Ability of Phase Interfaces in Lamellar Ti Alloys

Author(s):  
F. Wang ◽  
X. M. Luo ◽  
L. M. Lei ◽  
X. Fu ◽  
B. Zhang ◽  
...  
Author(s):  
N. E. Paton ◽  
D. de Fontaine ◽  
J. C. Williams

The electron microscope has been used to study the diffusionless β → β + ω transformation occurring in certain titanium alloys at low temperatures. Evidence for such a transformation was obtained by Cometto et al by means of x-ray diffraction and resistivity measurements on a Ti-Nb alloy. The present work shows that this type of transformation can occur in several Ti alloys of suitable composition, and some of the details of the transformation are elucidated by means of direct observation in the electron microscope.Thin foils were examined in a Philips EM-300 electron microscope equipped with a uniaxial tilt, liquid nitrogen cooled, cold stage and a high resolution dark field device. Selected area electron diffraction was used to identify the phases present and the ω-phase was imaged in dark field by using a (101)ω reflection. Alloys were water quenched from 950°C, thinned, and mounted between copper grids to minimize temperature gradients in the foil.


1984 ◽  
Vol 45 (C9) ◽  
pp. C9-417-C9-422
Author(s):  
A. Jimbo ◽  
T. Hashizume ◽  
T. Sakurai ◽  
K. Al-Saleh ◽  
H. W. Pickering
Keyword(s):  

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1275-C8-1276
Author(s):  
K. Sumiyama ◽  
H. Yasuda ◽  
Y. Nakamura

2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


1999 ◽  
Vol 5 (1) ◽  
pp. 90-96 ◽  
Author(s):  
V.V. Pilipenko ◽  
◽  
N.I. Dovgot'ko ◽  
S.I. Dolgopolov ◽  
A.D. Nikolaev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document