Tattoo Conductive Polymer Nanosheets for Skin-Contact Applications

2015 ◽  
Vol 4 (7) ◽  
pp. 983-990 ◽  
Author(s):  
Alessandra Zucca ◽  
Christian Cipriani ◽  
Sudha ◽  
Sergio Tarantino ◽  
Davide Ricci ◽  
...  
2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Kento Yamagishi ◽  
Takenori Nakanishi ◽  
Sho Mihara ◽  
Masaru Azuma ◽  
Shinji Takeoka ◽  
...  

Abstract Surface electromyography (sEMG) is widely used to analyze human movements, including athletic performance. For baseball pitchers, a very precise movement is required to pitch the ball into the strike zone. The palm muscles appear to play a key role in this movement, and a real-time recording of sEMG from the palm muscle is useful in the analysis of motion during baseball pitching. However, the currently available devices with rigid and bulky electrodes (including connective wires) impede natural movements of the wearer and recording of sEMG from the palm muscles during vigorous action. Here, we describe a skin-contact patch consisting of kirigami-based stretchable wirings and conductive polymer nanosheet-based ultraconformable bioelectrodes, which address the challenge of mechanical mismatch between human skin and electrical devices. The key strategy is a kirigami-inspired wiring design and a mechanical gradient structure from nanosheet-based flexible bioelectrodes to a bulk wearable device. This approach would buffer the mechanical stress applied to the skin-contact bioelectrodes during an arm swing movement. With this patch, we precisely measure sEMG at the abductor pollicis brevis muscle (APBM) in a baseball player during ball pitching. We observe differences in the activity of the APBM between different types of pitches—fastball and curveball. This sEMG measurement system will enable the analysis of motion in unexplored muscle areas, such as on the palm and the sole, leading to a deeper understanding of muscular activity during performance in a wide range of sports and other movements.


2021 ◽  
Author(s):  
Yanping Wang ◽  
Xing Zhong ◽  
Wei Wang ◽  
Dan Yu

Abstract Electrocardiography is one of the most significant technologies for detecting cardiovascular diseases. Nowadays, the problems of various electrodes still meet a great challenge. Herein, we design a low cost, environmentally friendly and flexible conductive electrode using cellulose and polyvinyl alcohol as a substrate assembled with conductive polymer polythiophene by in-situ oxidative polymerization, and the green solvent 1-butyl-3-methylimidazolium chloride as a crosslinking agent. The polyvinyl alcohol/cellulose/PEDOT:PSS(PCPP) composite electrode has excellent features of flexibility, low skin contact impedance and comfortable contact with skin. When the load of EDOT reaches 15 wt%, the electrode is stable and can clearly monitor the characteristic wave of ECG signals. Therefore, based on cellulosic biopolymer and conductive polymer PEDOT:PSS, an environmentally friendly, flexible and stable PCPP composite electrode is obtained and can be a promising candidate applied in the fields of energy storage and ECG sensing.


2015 ◽  
Vol 4 (7) ◽  
pp. 941-941 ◽  
Author(s):  
Alessandra Zucca ◽  
Christian Cipriani ◽  
Sudha ◽  
Sergio Tarantino ◽  
Davide Ricci ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Lei Zhang ◽  
Kirthika Senthil Kumar ◽  
Hao He ◽  
Catherine Jiayi Cai ◽  
Xu He ◽  
...  

Abstract Wearable dry electrodes are needed for long-term biopotential recordings but are limited by their imperfect compliance with the skin, especially during body movements and sweat secretions, resulting in high interfacial impedance and motion artifacts. Herein, we report an intrinsically conductive polymer dry electrode with excellent self-adhesiveness, stretchability, and conductivity. It shows much lower skin-contact impedance and noise in static and dynamic measurement than the current dry electrodes and standard gel electrodes, enabling to acquire high-quality electrocardiogram (ECG), electromyogram (EMG) and electroencephalogram (EEG) signals in various conditions such as dry and wet skin and during body movement. Hence, this dry electrode can be used for long-term healthcare monitoring in complex daily conditions. We further investigated the capabilities of this electrode in a clinical setting and realized its ability to detect the arrhythmia features of atrial fibrillation accurately, and quantify muscle activity during deep tendon reflex testing and contraction against resistance.


Author(s):  
Fujie Toshinori ◽  
Zucca Alessandra ◽  
Yamagishi Kento ◽  
Takeoka Shinji ◽  
Mattoli Virgilio ◽  
...  

2020 ◽  
Vol 8 (44) ◽  
pp. 23059-23095 ◽  
Author(s):  
Xinting Han ◽  
Guangchun Xiao ◽  
Yuchen Wang ◽  
Xiaona Chen ◽  
Gaigai Duan ◽  
...  

Conductive polymer hydrogels, which combine the advantages of both polymers and conductive materials, have huge potential in flexible supercapacitors.


2008 ◽  
Vol 39 (1) ◽  
pp. 35
Author(s):  
PATRICE WENDLING
Keyword(s):  

2018 ◽  
Author(s):  
Hakeem K. Henry ◽  
Sang Bok Lee

The PMo<sub>12</sub>-PPy heterogeneous cathode was synthesized electrochemically. In doing so, the PMo<sub>12</sub> redox-active material was impregnated throughout the conductive polymer matrix of the poly(pyrrole) nanowires. All chemicals and reagents used were purchased from Sigma-Aldrich. Anodized aluminum oxide (AAO) purchased from Whatman served as the porous hard template for nanowire deposition. A thin layer of gold of approximately 200nm was sputtered onto the disordered side of the AAO membrane to serve as the current collector. Copper tape was connected to the sputtered gold for contact and the device was sealed in parafilm with heat with an exposed area of 0.32 cm<sup>2</sup> to serve as the electroactive area for deposition. All electrochemical synthesis and experiments were conducted using a Bio-Logic MPG2 potentiostat. The deposition was carried out using a 3-electrode beaker cell setup with a solution of acetonitrile containing 5mM and 14mM of the phosphomolybdic acid and pyrrole monomer, respectively. The synthesis was achieved using chronoamperometry to apply a constant voltage of 0.8V vs. Ag/AgCl (BASi) to oxidatively polymerize the pyrrole monomer to poly(pyrrole). To prevent the POM from chemically polymerizing the pyrrole, an injection method was used in which the pyrrole monomer was added to the POM solution only after the deposition voltage had already been applied. The deposition was well controlled by limiting the amount of charge transferred to 300mC. Following deposition, the AAO template was removed by soaking in 3M sodium hydroxide (NaOH) for 20 minutes and rinsed several times with water. After synthesis, all cathodes underwent electrochemical testing to determine their performance using cyclic voltammetry and constant current charge-discharge cycling in 0.1 M Mg(ClO<sub>4</sub>)<sub>2</sub>/PC electrolyte. The cathodes were further characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and x-ray photoelectron spectroscopy (XPS).


Sign in / Sign up

Export Citation Format

Share Document