scholarly journals Flexible Cellulose-Based Assembled with PEDOT: PSS Electrodes for ECG Monitoring

Author(s):  
Yanping Wang ◽  
Xing Zhong ◽  
Wei Wang ◽  
Dan Yu

Abstract Electrocardiography is one of the most significant technologies for detecting cardiovascular diseases. Nowadays, the problems of various electrodes still meet a great challenge. Herein, we design a low cost, environmentally friendly and flexible conductive electrode using cellulose and polyvinyl alcohol as a substrate assembled with conductive polymer polythiophene by in-situ oxidative polymerization, and the green solvent 1-butyl-3-methylimidazolium chloride as a crosslinking agent. The polyvinyl alcohol/cellulose/PEDOT:PSS(PCPP) composite electrode has excellent features of flexibility, low skin contact impedance and comfortable contact with skin. When the load of EDOT reaches 15 wt%, the electrode is stable and can clearly monitor the characteristic wave of ECG signals. Therefore, based on cellulosic biopolymer and conductive polymer PEDOT:PSS, an environmentally friendly, flexible and stable PCPP composite electrode is obtained and can be a promising candidate applied in the fields of energy storage and ECG sensing.

2018 ◽  
Vol 89 (11) ◽  
pp. 2098-2112 ◽  
Author(s):  
Xueliang Xiao ◽  
Ke Dong ◽  
Chenhao Li ◽  
Guanzheng Wu ◽  
Hongtao Zhou ◽  
...  

Long-term electrocardiogram (ECG) recording can reveal some vital cardiovascular disorders and provide warning of human sudden cerebral or vascular diseases in advance. This requires high-quality ECG skin electrodes. Gel (Ag/AgCl) electrodes were reported to have good signal quality in ECG acquisition, but easily caused human skin irritation or allergy. Consequently, textile electrodes have attracted more attention for long-term ECG acquisition. In this paper, eight woven fabrics with diverse yarns and weft densities were fabricated in plain and honeycomb structures. The fabrics were investigated in terms of comfortability, fabric–skin contact impedance and acquired bio-signal quality. Honeycomb weave electrodes were measured with a high comfort level from subjective and objective views, including pleasant tactile comfort, high visual acceptance, good air permeability and good heat transfer. Weave electrodes made of all conductive filaments in high density had low skin contact impedance and high-quality ECG signals. An increase of compression load on weave electrodes resulted in a decrease of contact impedance with a high signal quality. A conductive honeycomb weave with unit repeat of 6*6 warps*wefts presented the highest score of acquired ECG signals of all studied electrodes based on the qualities of the QRS complex, P and T waves, R peak amplitude and variation and signal-to-noise ratio. This study contributes to the future design and fabrication of textile electrodes using honeycomb weave in long-term and real-time collection of human ECGs.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Lei Zhang ◽  
Kirthika Senthil Kumar ◽  
Hao He ◽  
Catherine Jiayi Cai ◽  
Xu He ◽  
...  

Abstract Wearable dry electrodes are needed for long-term biopotential recordings but are limited by their imperfect compliance with the skin, especially during body movements and sweat secretions, resulting in high interfacial impedance and motion artifacts. Herein, we report an intrinsically conductive polymer dry electrode with excellent self-adhesiveness, stretchability, and conductivity. It shows much lower skin-contact impedance and noise in static and dynamic measurement than the current dry electrodes and standard gel electrodes, enabling to acquire high-quality electrocardiogram (ECG), electromyogram (EMG) and electroencephalogram (EEG) signals in various conditions such as dry and wet skin and during body movement. Hence, this dry electrode can be used for long-term healthcare monitoring in complex daily conditions. We further investigated the capabilities of this electrode in a clinical setting and realized its ability to detect the arrhythmia features of atrial fibrillation accurately, and quantify muscle activity during deep tendon reflex testing and contraction against resistance.


2019 ◽  
Author(s):  
Charlys Bezerra ◽  
Géssica Santos ◽  
Marilia Pupo ◽  
Maria Gomes ◽  
Ronaldo Silva ◽  
...  

<p>Electrochemical oxidation processes are promising solutions for wastewater treatment due to their high efficiency, easy control and versatility. Mixed metal oxides (MMO) anodes are particularly attractive due to their low cost and specific catalytic properties. Here, we propose an innovative thermal decomposition methodology using <a>polyvinyl alcohol (PVA)</a> as a solvent to prepare Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes. Comparative anodes were prepared by conventional method employing a polymeric precursor solvent (Pechini method). The calcination temperatures studied were 300, 400 and 500 °C. The physical characterisation of all materials was performed by X-ray diffraction and scanning electron microscopy coupled with energy dispersive spectroscopy, while electrochemical characterisation was done by cyclic voltammetry, accelerated service lifetime and electrochemical impedance spectroscopy. Both RuO<sub>2</sub> and IrO<sub>2</sub> have rutile-type structures for all anodes. Rougher and more compact surfaces are formed for the anodes prepared using PVA. Amongst temperatures studied, 300 °C using PVA as solvent is the most suitable one to produce anodes with expressive increase in voltammetric charge (250%) and accelerated service lifetime (4.3 times longer) besides reducing charge-transfer resistance (8 times lower). Moreover, the electrocatalytic activity of the anodes synthesised with PVA toward the Reactive Blue 21 dye removal in chloride medium (100 % in 30 min) is higher than that prepared by Pechini method (60 min). Additionally, the removal total organic carbon point out improved mineralisation potential of PVA anodes. Finally, this study reports a novel methodology using PVA as solvent to synthesise Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes with improved properties that can be further extended to synthesise other MMO compositions.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu-An Chiou ◽  
Jhen-Yang Syu ◽  
Sz-Ying Wu ◽  
Lian-Yu Lin ◽  
Li Tzu Yi ◽  
...  

AbstractElectrocardiogram (ECG)-based intelligent screening for systolic heart failure (HF) is an emerging method that could become a low-cost and rapid screening tool for early diagnosis of the disease before the comprehensive echocardiographic procedure. We collected 12-lead ECG signals from 900 systolic HF patients (ejection fraction, EF < 50%) and 900 individuals with normal EF in the absence of HF symptoms. The 12-lead ECG signals were converted by continuous wavelet transform (CWT) to 2D spectra and classified using a 2D convolutional neural network (CNN). The 2D CWT spectra of 12-lead ECG signals were trained separately in 12 identical 2D-CNN models. The 12-lead classification results of the 2D-CNN model revealed that Lead V6 had the highest accuracy (0.93), sensitivity (0.97), specificity (0.89), and f1 scores (0.94) in the testing dataset. We designed four comprehensive scoring methods to integrate the 12-lead classification results into a key diagnostic index. The highest quality result among these four methods was obtained when Leads V5 and V6 of the 12-lead ECG signals were combined. Our new 12-lead ECG signal–based intelligent screening method using straightforward combination of ECG leads provides a fast and accurate approach for pre-screening for systolic HF.


Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 474 ◽  
Author(s):  
Bei Wang ◽  
Manuel Baeuscher ◽  
Xiaodong Hu ◽  
Markus Woehrmann ◽  
Katharina Becker ◽  
...  

A novel capacitive sensor for measuring the water-level and monitoring the water quality has been developed in this work by using an enhanced screen printing technology. A commonly used environment-friendly conductive polymer poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) for conductive sensors has a limited conductivity due to its high sheet resistance. A physical treatment performed during the printing process has reduced the sheet resistance of printed PEDOT:PSS on polyethylenterephthalat (PET) substrate from 264.39 Ω/sq to 23.44 Ω/sq. The adhesion bonding force between printed PEDOT:PSS and the substrate PET is increased by using chemical treatment and tested using a newly designed adhesive peeling force test. Using the economical conductive ink PEDOT:PSS with this new physical treatment, our capacitive sensors are cost-efficient and have a sensitivity of up to 1.25 pF/mm.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Donghui Yang ◽  
Yixin Zhao ◽  
Zhangxuan Ning ◽  
Zhaoheng Lv ◽  
Huafeng Luo

Drilling and blasting technology is one of the main methods for pressure relief in deep mining. The traditional method for blasting hole blockage with clay stemming has many problems, which include a large volume of transportation, excess loading time, and high labor intensity. An environmentally friendly blast hole plug was designed and developed. This method is cheap, closely blocks the hole, is quickly loaded, and is convenient for transportation. The impact test on the plug was carried out using an improved split Hopkinson pressure bar test system, and the industrial test was carried out in underground tunnel of coal mine. The tests results showed that, compared with clay stemming, the new method proposed in this paper could prolong the action time of the detonation gas, prevent premature detonation gas emissions, reduce the unit consumption of explosives, improve the utilization ratio, reduce the labor intensity of workers, and improve the effect of rock blasting with low cost of rock breaking.


2010 ◽  
Vol 18 (5) ◽  
pp. 28-31
Author(s):  
R.B. Simmons

In recent years there has been a virtual explosion in the world of art glass. New glass formulations have brought a host of new colors into the marketplace, and the availability of low-cost, high-quality torches and other tools has brought art glass to the hobbyist. In addition to burn risks and possible cutting injury, there are a number of less obvious hazards that should be known to novice glass workers. One of these is the presence of heavy metals in or on glass surfaces and possibly in the atmosphere immediately surrounding the work area, presenting both potential skin contact and inhalation hazards. This study examines the metallic surfaces generated on five glass colors commonly used in art glass jewelry.


Sign in / Sign up

Export Citation Format

Share Document