scholarly journals Sustained Release of Cx43 Antisense Oligodeoxynucleotides from Coated Collagen Scaffolds Promotes Wound Healing

2016 ◽  
Vol 5 (14) ◽  
pp. 1786-1799 ◽  
Author(s):  
Daniel J. Gilmartin ◽  
Allyson Soon ◽  
Christopher Thrasivoulou ◽  
Anthony R. J. Phillips ◽  
Suwan N. Jayasinghe ◽  
...  
2019 ◽  
Vol 107 (7) ◽  
pp. 1414-1424 ◽  
Author(s):  
Jinfei Hou ◽  
Lifeng Chen ◽  
Zhirong Liu ◽  
Jialun Li ◽  
Jie Yang ◽  
...  

2020 ◽  
Vol Volume 15 ◽  
pp. 1349-1361 ◽  
Author(s):  
Jinfei Hou ◽  
Lifeng Chen ◽  
Muran Zhou ◽  
Jialun Li ◽  
Jian Liu ◽  
...  

2020 ◽  
Vol 91 ◽  
pp. 106827
Author(s):  
Maryam Najafiasl ◽  
Shahriar Osfouri ◽  
Reza Azin ◽  
Sasan Zaeri

2021 ◽  
Vol 22 (12) ◽  
pp. 6267
Author(s):  
Meng-Jin Lin ◽  
Mei-Chun Lu ◽  
Hwan-You Chang

The goals of this study are to develop a high purity patented silk fibroin (SF) film and test its suitability to be used as a slow-release delivery for insulin-like growth factor-1 (IGF-1). The release rate of the SF film delivering IGF-1 followed zero-order kinetics as determined via the Ritger and Peppas equation. The release rate constant was identified as 0.11, 0.23, and 0.09% h−1 at 37 °C for SF films loaded with 0.65, 6.5, and 65 pmol IGF-1, respectively. More importantly, the IGF-1 activity was preserved for more than 30 days when complexed with the SF film. We show that the IGF-1-loaded SF films significantly accelerated wound healing in vitro (BALB/3T3) and in vivo (diabetic mice), compared with wounds treated with free IGF-1 and an IGF-1-loaded hydrocolloid dressing. This was evidenced by a six-fold increase in the granulation tissue area in the IGF-1-loaded SF film treatment group compared to that of the PBS control group. Western blotting analysis also demonstrated that IGF-1 receptor (IGF1R) phosphorylation in diabetic wounds increased more significantly in the IGF-1-loaded SF films group than in other experimental groups. Our results suggest that IGF-1 sustained release from SF films promotes wound healing through continuously activating the IGF1R pathway, leading to the enhancement of both wound re-epithelialization and granulation tissue formation in diabetic mice. Collectively, these data indicate that SF films have considerable potential to be used as a wound dressing material for long-term IGF-1 delivery for diabetic wound therapy.


2021 ◽  
Author(s):  
Xingyu Chen ◽  
Zuxin Wang ◽  
Shan Gao ◽  
Wanlin Zhang ◽  
Hanwen Gong ◽  
...  

The Tibetan eighteen flavor dangshen pills (TEP) are composed of 18 traditional Tibetan medicines, which are commonly used in the treatment of skin diseases in the Tibetan medicine system. They...


2020 ◽  
Vol 8 (20) ◽  
pp. 5647-5655
Author(s):  
Jifang Yuan ◽  
Qian Hou ◽  
Lingzhi Zhong ◽  
Xin Dai ◽  
Qiang Lu ◽  
...  

Inhibitor released slowly from silk-chitosan bionic scaffolds, resulting in the accelerated wound healing and hair follicle regeneration.


2020 ◽  
Vol 15 (2) ◽  
pp. 1277-1293 ◽  
Author(s):  
Jolanta Gorecka ◽  
Xixiang Gao ◽  
Arash Fereydooni ◽  
Biraja C Dash ◽  
Jiesi Luo ◽  
...  

Aim: To assess the potential of human induced pluripotent stem cell-derived smooth muscle cells (hiPSC-SMC) to accelerate diabetic wound healing. Methods: hiPSC-SMC were embedded in 3D collagen scaffolds and cultured in vitro for 72 h; scaffolds were then applied to diabetic, nude mouse, splinted back wounds to assess in vivo healing. Cultured medium after scaffold incubation was collected and analyzed for expression of pro-angiogenic cytokines. Results: hiPSC-SMC secrete increased concentration of pro-angiogenic cytokines, compared with murine adipose derived stem cells. Delivery of hiPSC-SMC-containing collagen scaffolds accelerates diabetic wound healing and is associated with an increased number of total and M2 type macrophages. Conclusion: hiPSC-SMC promote angiogenesis and accelerate diabetic wound healing, making them a promising new candidate for treatment of diabetic wounds.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 447 ◽  
Author(s):  
Fabian Ávila-Salas ◽  
Adolfo Marican ◽  
Soledad Pinochet ◽  
Gustavo Carreño ◽  
Oscar Valdés ◽  
...  

This research proposes the rational modeling, synthesis and evaluation of film dressing hydrogels based on polyvinyl alcohol crosslinked with 20 different kinds of dicarboxylic acids. These formulations would allow the sustained release of simultaneous bioactive compounds including allantoin, resveratrol, dexpanthenol and caffeic acid as a multi-target therapy in wound healing. Interaction energy calculations and molecular dynamics simulation studies allowed evaluating the intermolecular affinity of the above bioactive compounds by hydrogels crosslinked with the different dicarboxylic acids. According to the computational results, the hydrogels crosslinked with succinic, aspartic, maleic and malic acids were selected as the best candidates to be synthesized and evaluated experimentally. These four crosslinked hydrogels were prepared and characterized by FTIR, mechanical properties, SEM and equilibrium swelling ratio. The sustained release of the bioactive compounds from the film dressing was investigated in vitro and in vivo. The in vitro results indicate a good release profile for all four analyzed bioactive compounds. More importantly, in vivo experiments suggest that prepared formulations could considerably accelerate the healing rate of artificial wounds in rats. The histological studies show that these formulations help to successfully reconstruct and thicken epidermis during 14 days of wound healing. Moreover, the four film dressings developed and exhibited excellent biocompatibility. In conclusion, the novel film dressings based on hydrogels rationally designed with combinatorial and sustained release therapy could have significant promise as dressing materials for skin wound healing.


Sign in / Sign up

Export Citation Format

Share Document