Dual Extrusion Patterning Drives Tissue Development Aesthetics and Shape Retention in 3D Printed Nipple‐Areola Constructs

2021 ◽  
pp. 2101249
Author(s):  
Sarah Van Belleghem ◽  
Bhushan Mahadik ◽  
Kirstie Snodderly ◽  
Zoe Mote ◽  
Bin Jiang ◽  
...  
Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2352 ◽  
Author(s):  
Behzad Nematollahi ◽  
Praful Vijay ◽  
Jay Sanjayan ◽  
Ali Nazari ◽  
Ming Xia ◽  
...  

This paper investigates the effect of polypropylene (PP) fibres on the fresh and hardened properties of 3D-printed fibre-reinforced geopolymer mortars. Different percentages of PP fibres ranging between 0.25% and 1.00% by volume were added to an optimised geopolymer mixture. All samples showed reasonable workability and extrudability. In addition, shape-retention ability in the fresh state was investigated as a major requirement for 3D-printing. The compressive strength of the printed specimens was tested in the hardened state in three loading directions, viz. longitudinal, perpendicular, and lateral. The flexural strength of samples was also tested in the longitudinal and lateral directions. In addition, the interlayer bond strength was investigated. Fibre addition seems to influence compressive strengths positively only when the loading is perpendicular to the interface plane. This is due to the preferential fibre alignment parallel to the direction of extrusion. The addition of fibre significantly enhanced the flexural performance of the printed samples. The use of fibre dosages of 0.75 and 1.00 vol % caused deflection-hardening behaviour of the 3D-printed geopolymers and, hence, a significantly higher fracture energy in comparison to specimens without fibre or with lower fibre content. However, an increase in the fibre volume caused some minor reduction in interlayer bond strength. With respect to properties in the fresh state, higher fibre volumes caused better shape-retention ability in the printed samples. The results indicate the possibility of printing fibre-reinforced geopolymers which meet all the necessary properties in both the fresh and hardened states.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1527 ◽  
Author(s):  
Martina Lille ◽  
Anni Kortekangas ◽  
Raija-Liisa Heiniö ◽  
Nesli Sozer

This study addressed the potential of 3D printing as a processing technology for delivering personalized healthy eating solutions to consumers. Extrusion-based 3D printing was studied as a tool to produce protein- and dietary fibre-rich snack products from whole milk powder and wholegrain rye flour. Aqueous pastes were prepared from the raw materials at various ratios, grid-like samples printed from the pastes at ambient temperature and the printed samples post-processed by oven baking at 150 °C. Printing pastes were characterized by rheological measurements and the baked samples by X-ray micro tomography, texture measurements and sensory analysis. All formulations showed good printability and shape stability after printing. During baking, the milk powder-based samples expanded to a level that caused a total collapse of the printed multiple-layer samples. Shape retention during baking was greatly improved by adding rye flour to the milk formulation. Sensory evaluation revealed that the volume, glossiness, sweetness and saltiness of the baked samples increased with an increasing level of milk powder in the printing paste. A mixture of milk powder and rye flour shows great potential as a formulation for healthy snack products produced by extrusion-based 3D printing.


2016 ◽  
Vol 77 (S 02) ◽  
Author(s):  
Hassan Othman ◽  
Sam Evans ◽  
Daniel Morris ◽  
Saty Bhatia ◽  
Caroline Hayhurst

2019 ◽  
Author(s):  
Avital Perry ◽  
Soliman Oushy ◽  
Lucas Carlstrom ◽  
Christopher Graffeo ◽  
David Daniels ◽  
...  

2020 ◽  
Vol XV (1) ◽  
Author(s):  
E. Presnyakov ◽  
I. Bozo ◽  
I. Smirnov ◽  
V. Komlev ◽  
V. Popov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document