Reducing Energy Disorder of Hole Transport Layer by Charge Transfer Complex for High Performance p–i–n Perovskite Solar Cells

2021 ◽  
pp. 2006753
Author(s):  
Guiying Xu ◽  
Rongming Xue ◽  
Samuel J. Stuard ◽  
Harald Ade ◽  
Chenjie Zhang ◽  
...  
2018 ◽  
Vol 246 ◽  
pp. 195-203 ◽  
Author(s):  
Dian Wang ◽  
Naveen Kumar Elumalai ◽  
Md Arafat Mahmud ◽  
Haimang Yi ◽  
Mushfika Baishakhi Upama ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 682 ◽  
Author(s):  
Chien-Jui Cheng ◽  
Rathinam Balamurugan ◽  
Bo-Tau Liu

In this study, we incorporated silver nanowires (AgNWs) into poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a hole transport layer (HTL) for inverted perovskite solar cells (PVSCs). The effect of AgNW incorporation on the perovskite crystallization, charge transfer, and power conversion efficiency (PCE) of PVSCs were analyzed and discussed. Compared with neat PEDOT:PSS HTL, incorporation of few AgNWs into PEDOT:PSS can significantly enhance the PCE by 25%. However, the AgNW incorporation may result in performance overestimation due to the lateral charge transfer. The corrosion of AgNWs with a perovskite layer was discussed. Too much AgNW incorporation may lead to defects on the interface between the HTL and the perovskite layer. An extra PEDOT:PSS layer over the pristine PEDOT:PSS-AgNW layer can prevent AgNWs from corrosion by iodide ions.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1281
Author(s):  
Jae Woong Jung ◽  
Seung Hwan Son ◽  
Jun Choi

We herein address the optoelectronic properties of polyaniline composite films with graphene oxide and reduced graphene oxide as a hole transport layer in inverted perovskite solar cells. The composite films exhibited enhanced electrical conductivity and suitable energy level matching with CH3NH3PbI3 for efficient hole extraction/transport than the pristine polyaniline film, which thus can deliver improved photovoltaic properties of device. The composite film-based devices exhibited maximum efficiency of 16.61%, which is enhanced by 21.6% from the device with the pristine polyaniline hole transport layer (efficiency = 13.66%). The reduced graphene oxide-based composite film also achieved improved long-term operative stability as compared to the pristine polyaniline-based device, demonstrating a great potential of reduced graphene oxide/polyaniline composite hole transport layer for high performance perovskite solar cells.


2016 ◽  
Vol 8 (10) ◽  
pp. 6546-6553 ◽  
Author(s):  
Dong Hun Sin ◽  
Hyomin Ko ◽  
Sae Byeok Jo ◽  
Min Kim ◽  
Geun Yeol Bae ◽  
...  

2018 ◽  
Vol 29 (47) ◽  
pp. 1806740 ◽  
Author(s):  
Hytham Elbohy ◽  
Behzad Bahrami ◽  
Sally Mabrouk ◽  
Khan Mamun Reza ◽  
Ashim Gurung ◽  
...  

2021 ◽  
Author(s):  
Hamed Moeini Alishah ◽  
Fatma Pinar Gokdemir Choi ◽  
Serap Gunes

Abstract Inverted-type perovskite solar cells have drawn remarkable attention due to solution-processable, straightforward configuration, low-cost processing, and manufacturing at very high throughput, even on top of flexible materials. The hole transport material (HTM) plays a vital role to achieve high performance in inverted type of perovskite solar cells. Herein, we report on the effect of different commercial PEDOT: PSS such as PH 1000, PH 500, P VP AI, and P T2, on the performance of CH3NH3PbI3 based planar perovskite solar cells.


Sign in / Sign up

Export Citation Format

Share Document