Synergetic Enhancement of Permittivity and Breakdown Strength in All-Polymeric Dielectrics toward Flexible Energy Storage Devices

2016 ◽  
Vol 3 (13) ◽  
pp. 1600016 ◽  
Author(s):  
Li Yao ◽  
Dongrui Wang ◽  
Penghao Hu ◽  
Bao-Zhong Han ◽  
Zhi-Min Dang
Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7188
Author(s):  
Bipul Deka ◽  
Kyung-Hoon Cho

Dielectric capacitors have been widely studied because their electrostatic storage capacity is enormous, and they can deliver the stored energy in a very short time. Relaxor ferroelectrics-based dielectric capacitors have gained tremendous importance for the efficient storage of electrical energy. Relaxor ferroelectrics possess low dielectric loss, low remanent polarization, high saturation polarization, and high breakdown strength, which are the main parameters for energy storage. This article focuses on a timely review of the energy storage performance of BiFeO3-based relaxor ferroelectrics in bulk ceramics, multilayers, and thin film forms. The article begins with a general introduction to various energy storage systems and the need for dielectric capacitors as energy storage devices. This is followed by a brief discussion on the mechanism of energy storage in capacitors, ferroelectrics, anti-ferroelectrics, and relaxor ferroelectrics as potential candidates for energy storage. The remainder of this article is devoted to reviewing the energy storage performance of bulk ceramics, multilayers, and thin films of BiFeO3-based relaxor ferroelectrics, along with a discussion of strategies to address some of the issues associated with their application as energy storage systems.


2020 ◽  
Vol 13 (10) ◽  
pp. 3527-3535 ◽  
Author(s):  
Nana Chang ◽  
Tianyu Li ◽  
Rui Li ◽  
Shengnan Wang ◽  
Yanbin Yin ◽  
...  

A frigostable aqueous hybrid electrolyte enabled by the solvation interaction of Zn2+–EG is proposed for low-temperature zinc-based energy storage devices.


2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


Author(s):  
Dhanasekar Kesavan ◽  
Vimal Kumar Mariappan ◽  
Karthikeyan Krishnamoorthy ◽  
Sang-Jae Kim

In this study, we report a facile carbothermal method for the preparation of boron-oxy-carbide (BOC) nanostructures and explore their properties towards electrochemical energy storage devices.


Author(s):  
Manika Chaudhary ◽  
Shrestha Tyagi ◽  
Ram K. Gupta ◽  
Beer Pal Singh ◽  
Rahul Singhal

2021 ◽  
Vol 289 ◽  
pp. 116734 ◽  
Author(s):  
Feng Wang ◽  
Lin Zhang ◽  
Qian Zhang ◽  
Jinjiang Yang ◽  
Gaigai Duan ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4000
Author(s):  
Eunhwan Kim ◽  
Juyeon Han ◽  
Seokgyu Ryu ◽  
Youngkyu Choi ◽  
Jeeyoung Yoo

For decades, improvements in electrolytes and electrodes have driven the development of electrochemical energy storage devices. Generally, electrodes and electrolytes should not be developed separately due to the importance of the interaction at their interface. The energy storage ability and safety of energy storage devices are in fact determined by the arrangement of ions and electrons between the electrode and the electrolyte. In this paper, the physicochemical and electrochemical properties of lithium-ion batteries and supercapacitors using ionic liquids (ILs) as an electrolyte are reviewed. Additionally, the energy storage device ILs developed over the last decade are introduced.


Sign in / Sign up

Export Citation Format

Share Document