scholarly journals BiFeO3-Based Relaxor Ferroelectrics for Energy Storage: Progress and Prospects

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7188
Author(s):  
Bipul Deka ◽  
Kyung-Hoon Cho

Dielectric capacitors have been widely studied because their electrostatic storage capacity is enormous, and they can deliver the stored energy in a very short time. Relaxor ferroelectrics-based dielectric capacitors have gained tremendous importance for the efficient storage of electrical energy. Relaxor ferroelectrics possess low dielectric loss, low remanent polarization, high saturation polarization, and high breakdown strength, which are the main parameters for energy storage. This article focuses on a timely review of the energy storage performance of BiFeO3-based relaxor ferroelectrics in bulk ceramics, multilayers, and thin film forms. The article begins with a general introduction to various energy storage systems and the need for dielectric capacitors as energy storage devices. This is followed by a brief discussion on the mechanism of energy storage in capacitors, ferroelectrics, anti-ferroelectrics, and relaxor ferroelectrics as potential candidates for energy storage. The remainder of this article is devoted to reviewing the energy storage performance of bulk ceramics, multilayers, and thin films of BiFeO3-based relaxor ferroelectrics, along with a discussion of strategies to address some of the issues associated with their application as energy storage systems.

Author(s):  
Huan Pang ◽  
Rong Mei Zhu ◽  
Hui Yu Duan ◽  
Zhimin Zhao

Uneven energy distribution in space-time has led to an increase in the demand for energy storage devices. In recent years, aqueous energy storage systems have attracted considerable attention because of...


2020 ◽  
Author(s):  
Ruhul Amin ◽  
Petla Ramesh Kumar ◽  
Ilias Belharouak

Carbon nanotubes (CNTs) are an extraordinary discovery in the area of science and technology. Engineering them properly holds the promise of opening new avenues for future development of many other materials for diverse applications. Carbon nanotubes have open structure and enriched chirality, which enable improvements the properties and performances of other materials when CNTs are incorporated in them. Energy storage systems have been using carbon nanotubes either as an additive to improve electronic conductivity of cathode materials or as an active anode component depending upon structural and morphological specifications. Furthermore, they have also been used directly as the electrode material in supercapacitors and fuel cells. Therefore, CNTs demand a huge importance due to their underlying properties and prospective applications in the energy storage research fields. There are different kinds of carbon nanotubes which have been successfully used in batteries, supercapacitors, fuel cells and other energy storage systems. This chapter focuses on the role of CNTs in the different energy storage and conversion systems and impact of their structure and morphology on the electrochemical performances and storage mechanisms.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1080
Author(s):  
Rabia Ikram ◽  
Badrul Mohamed Jan ◽  
Syed Atif Pervez ◽  
Vassilis M. Papadakis ◽  
Waqas Ahmad ◽  
...  

Graphene, a 2D carbon structure, due to its unique materials characteristics for energy storage applications has grasped the considerable attention of scientists. The highlighted properties of this material with a mechanically robust and highly conductive nature have opened new opportunities for different energy storage systems such as Li-S (lithium-sulfur), Li-ion batteries, and metal-air batteries. It is necessary to understand the intrinsic properties of graphene materials to widen its large-scale applications in energy storage systems. In this review, different routes of graphene synthesis were investigated using chemical, thermal, plasma, and other methods along with their advantages and disadvantages. Apart from this, the applications of N-doped graphene in energy storage devices were discussed.


Author(s):  
Mingzhe Chen ◽  
Yanyan Zhang ◽  
Guichuan Xing ◽  
Shulei Chou ◽  
Yunxin Tang

The energy storage systems (ESSs) revolution flourishes next-generation personal electronics, electric vehicles/hybrid electric vehicles, and stationary storage. With the rapid application of advanced ESSs, the usage of ESSs are becoming...


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3492 ◽  
Author(s):  
Muhammad Mutarraf ◽  
Yacine Terriche ◽  
Kamran Niazi ◽  
Juan Vasquez ◽  
Josep Guerrero

In recent years, concerns about severe environmental pollution and fossil fuel consumption has grabbed attention in the transportation industry, particularly in marine vessels. Another key challenge in ships is the fluctuations caused by high dynamic loads. In order to have a higher reliability in shipboard power systems, presently more generators are kept online operating much below their efficient point. Hence, to improve the fuel efficiency of shipboard power systems, the minimum generator operation with N-1 safety can be considered as a simple solution, a tradeoff between fuel economy and reliability. It is based on the fact that the fewer the number of generators that are brought online, the more load is on each generator such that allowing the generators to run on better fuel efficiency region. In all-electric ships, the propulsion and service loads are integrated to a common network in order to attain improved fuel consumption with lesser emissions in contrast to traditional approaches where propulsion and service loads are fed by separate generators. In order to make the shipboard power system more reliable, integration of energy storage system (ESS) is found out to be an effective solution. Energy storage devices, which are currently being used in several applications consist of batteries, ultra-capacitor, flywheel, and fuel cell. Among the batteries, lithium-ion is one of the most used type battery in fully electric zero-emission ferries with the shorter route (around 5 to 10 km). Hybrid energy storage systems (HESSs) are one of the solutions, which can be implemented in high power/energy density applications. In this case, two or more energy storage devices can be hybridized to achieve the benefits from both of them, although it is still a challenge to apply presently such application by a single energy storage device. The aim of this paper is to review several types of energy storage devices that have been extensively used to improve the reliability, fuel consumption, dynamic behavior, and other shortcomings for shipboard power systems. Besides, a summary is conducted to address most of the applied technologies mentioned in the literature with the aim of highlighting the challenges of integrating the ESS in the shipboard microgrids.


Nanoscale ◽  
2017 ◽  
Vol 9 (33) ◽  
pp. 12189-12195 ◽  
Author(s):  
Peng Zhang ◽  
Furong Qin ◽  
Lei Zou ◽  
Mengran Wang ◽  
Kai Zhang ◽  
...  

Sodium-ion batteries (SIBs) show great potential as alternative energy storage devices for next generation energy storage systems due to the deficiency of lithium resources.


2018 ◽  
Vol 778 ◽  
pp. 181-186 ◽  
Author(s):  
Tayyaba Malik ◽  
Shayan Naveed ◽  
Muhammad Muneer ◽  
Mohammad Ali Mohammad

Recently, supercapacitors have attracted a tremendous amount of attention as energy-storage devices due to their high-power density, fast charge–discharge ability, excellent reversibility, and long cycling life. In this research work, we demonstrate a laser scribed super capacitor based on polyimide (PI) substrate for the storage of electrical energy. PI substrate of thickness 200μm and area 1cm × 1cm was reduced by a laser engraver with a 450 nm wavelength in the form of stackable supercapacitor electrodes. Although, PI itself exhibits non-conductive behavior; however, by laser irradiation we change the surface properties of PI and reduce its resistance. The chemical property of irradiated PI was characterized with XRD where the carbon peak was observed at 2*theta = 25.44, which confirms the reduction of PI material in to a graphene-like substance. The electrical conductivity was analyzed with a probe station and observed to be 1.6mS. Two conductive regions were assembled into a capacitor device by sandwiching a PVA/H3PO4 electrolyte in between. During the charging and discharging characterization of the capacitor device, current density was observed to be 1.5mA/cm2. Capacitance versus voltage analysis was carried out and the device showed 75mF/cm2 against a voltage sweep of ±2V. The galvanostatic charging and discharging curve shows a symmetric behavior with respect to time exhibiting the stability and durability of the device.


Sign in / Sign up

Export Citation Format

Share Document