scholarly journals Construction of N ‐Boc‐2‐Alkylaminoquinazolin‐4(3 H )‐Ones via a Three‐Component, One‐Pot Protocol Mediated by Copper(II) Chloride that Spares Enantiomeric Purity

Author(s):  
Xiaoyu Li ◽  
Jennifer E. Golden
Keyword(s):  
2007 ◽  
Vol 35 (6) ◽  
pp. 1583-1587 ◽  
Author(s):  
R.A. Sheldon

The key to obtaining an optimum performance of an enzyme is often a question of devising an effective method for its immobilization. In the present review, we describe a novel, versatile and effective methodology for enzyme immobilization as CLEAs (cross-linked enzyme aggregates). The method is exquisitely simple (involving precipitation of the enzyme from aqueous buffer followed by cross-linking of the resulting physical aggregates of enzyme molecules) and amenable to rapid optimization. We have shown it to be applicable to a wide variety of enzymes, including, in addition to a wide variety of hydrolases, lyases, e.g. nitrile hydratases and oxynitrilases, and oxidoreductases such as laccase and galactose oxidase. CLEAs are stable, recyclable catalysts exhibiting high catalyst productivities. Because the methodology is essentially a combination of purification and immobilization into one step, the enzyme does not need to be of high purity. The technique is also applicable to the preparation of combi-CLEAs, containing two or more enzymes, for use in one-pot, multistep syntheses, e.g. an oxynitrilase/nitrilase combi-CLEA for the one-pot conversion of benzaldehyde into (S)-mandelic acid, in high yield and enantiomeric purity.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1578
Author(s):  
Renata Kołodziejska ◽  
Renata Studzińska ◽  
Agnieszka Tafelska-Kaczmarek ◽  
Hanna Pawluk ◽  
Dominika Mlicka ◽  
...  

In this study, we examined the Aureobasidium pullulans strains DSM 14940 and DSM 14941 included in the Blossom Protect™ agent to be used in the bioreduction reaction of a symmetrical dicarbonyl compound. Both chiral 2-hydroxy-1,2-diphenylethanone antipodes were obtained with a high enantiomeric purity. Mild conditions (phosphate buffer [pH 7.0, 7.2], 30 °C) were successfully employed in the synthesis of (S)-benzoin using two different methodologies: benzyl desymmetrization and rac-benzoin deracemization. Bioreduction carried out with higher reagent concentrations, lower pH values and prolonged reaction time, and in the presence of additives, enabled enrichment of the reaction mixture with (R)-benzoin. The described procedure is a potentially useful tool in the synthesis of chiral building blocks with a defined configuration in a simple and economical process with a lower environmental impact, enabling one-pot biotransformation.


2020 ◽  
Author(s):  
José Tiago Menezes Correia ◽  
Gustavo Piva da Silva ◽  
Camila Menezes Kisukuri ◽  
Elias André ◽  
Bruno Pires ◽  
...  

A metal- and catalyst-free photoinduced radical cascade hydroalkylation of 1,7-enynes has been disclosed. The process is triggered by a SET event involving a photoexcited electron-donor-aceptor complex between NHPI ester and Hantzsch ester, which decomposes to afford a tertiary radical that is readily trapped by the enyne. <a>The method provides an operationally simple, robust and step-economical approach to the construction of diversely functionalized dihydroquinolinones bearing quaternary-centers. A sequential one-pot hydroalkylation-isomerization approach is also allowed giving access to a family of quinolinones. A wide substrate scope and high functional group tolerance was observed in both approaches</a>.


2020 ◽  
Author(s):  
Lucien Caspers ◽  
Julian Spils ◽  
Mattis Damrath ◽  
Enno Lork ◽  
Boris Nachtsheim

In this article we describe an efficient approach for the synthesis of cyclic diaryliodonium salts. The method is based on benzyl alcohols as starting materials and consists of an Friedel-Crafts-arylation/oxidation sequence. Besides a deep optimization, particluar focusing on the choice and ratios of the utilized Bronsted-acids and oxidants, we explore the substrate scope of this transformation. We also discuss an interesting isomerism of cyclic iodonium salts substituted with aliphatic substituents at the bridge head carbon. <br>


2020 ◽  
Author(s):  
Dung Do

<p>Chiral molecules with their defined 3-D structures are of paramount importance for the study of chemical biology and drug discovery. Having rich structural diversity and unique stereoisomerism, chiral molecules offer a large chemical space that can be explored for the design of new therapeutic agents.<sup>1</sup> Practically, chiral architectures are usually prepared from organometallic and organocatalytic processes where a transition metal or an organocatalyst is tailor-made for desired reactions. As a result, developing a method that enables rapid assembly of chiral complex molecules under metal- and organocatalyst-free condition represents a daunting challenge. Here we developed a straightforward route to create a chiral 3-D structure from 2-D structures and an amino acid without any chiral catalyst. The center of this research is the design of a <a>special chiral spiroimidazolidinone cyclohexadienone intermediate</a>, a merger of a chiral reactive substrate with multiple nucleophillic/electrophillic sites and a transient organocatalyst. <a>This unique substrate-catalyst (“subcatalyst”) dual role of the intermediate enhances </a><a>the coordinational proximity of the chiral substrate and catalyst</a> in the key Aza-Michael/Michael cascade resulting in a substantial steric discrimination and an excellent overall diastereoselectivity. Whereas the “subcatalyst” (hidden catalyst) is not present in the reaction’s initial components, which renders a chiral catalyst-free process, it is strategically produced to promote sequential self-catalyzed reactions. The success of this methodology will pave the way for many efficient preparations of chiral complex molecules and aid for the quest to create next generation of therapeutic agents.</p>


Sign in / Sign up

Export Citation Format

Share Document