scholarly journals Microbial Synthesis of (S)- and (R)-Benzoin in Enantioselective Desymmetrization and Deracemization Catalyzed by Aureobasidium pullulans Included in the Blossom Protect™ Agent

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1578
Author(s):  
Renata Kołodziejska ◽  
Renata Studzińska ◽  
Agnieszka Tafelska-Kaczmarek ◽  
Hanna Pawluk ◽  
Dominika Mlicka ◽  
...  

In this study, we examined the Aureobasidium pullulans strains DSM 14940 and DSM 14941 included in the Blossom Protect™ agent to be used in the bioreduction reaction of a symmetrical dicarbonyl compound. Both chiral 2-hydroxy-1,2-diphenylethanone antipodes were obtained with a high enantiomeric purity. Mild conditions (phosphate buffer [pH 7.0, 7.2], 30 °C) were successfully employed in the synthesis of (S)-benzoin using two different methodologies: benzyl desymmetrization and rac-benzoin deracemization. Bioreduction carried out with higher reagent concentrations, lower pH values and prolonged reaction time, and in the presence of additives, enabled enrichment of the reaction mixture with (R)-benzoin. The described procedure is a potentially useful tool in the synthesis of chiral building blocks with a defined configuration in a simple and economical process with a lower environmental impact, enabling one-pot biotransformation.

SynOpen ◽  
2019 ◽  
Vol 03 (01) ◽  
pp. 1-3 ◽  
Author(s):  
Reuben James ◽  
Sharon Herlugson ◽  
Sami Varjosaari ◽  
Vladislav Skrypai ◽  
Zainab Shakeel ◽  
...  

A one-pot, direct reductive acetylation of aldehydes was achieved under mild conditions using 1-hydrosilatrane as a safe and easily accessible catalyst. Described herein is a facile synthesis that produces acylated primary alcohols that can serve as valuable building blocks for organic synthesis. The method has good functional group tolerance and works for a range of aryl aldehydes, with the notable exception of electron-rich arenes. A library of esters was isolated by flash chromatography in yields as high as 92%.


2022 ◽  
Author(s):  
Christof Matt ◽  
Andreas Orthaber ◽  
Jan Streuff

A catalytic enantioselective β-O-elimination reaction is reported in the form of a zirconium-catalyzed asymmetric opening of meso-ketene acetals. Furthermore, a regiodivergent β-O-elimination is demonstrated. The reaction proceeds under mild conditions, at low catalyst loadings, and produces chiral monoprotected 1,2-diol building blocks in good yield and enantiomeric excess. The combination with a Mitsunobu reaction then gives access to all 1,2-diol stereoisomers and trans-1,2-aminoalcohols in high enantiomeric purity. A stereochemical analysis supported by DFT calculations reveals that a high selectivity in the hydrozirconation step is also important for achieving high enantioselectivity, although it does not constitute the asymmetric step. This insight is crucial for the future development of related asymmetric β-elimination reactions.


2018 ◽  
Author(s):  
Irene Suárez-Marina ◽  
Rebecca Turk-MacLeod ◽  
Yousef M. Abul-Haija ◽  
Piotr S. Gromski ◽  
Geoffrey Cooper ◽  
...  

<p><b>Research on the origin of nucleic acids and proteins has been approached by either multi-step synthesis or simple one-pot reactions, but exploration of their prebiotic chemistry is normally done separately. However, if nucleotides and amino acids co-existed on early Earth, their mutual interactions and reactivity should be considered in exploring the emergence of complex chemical systems that can ultimately evolve. To explore this idea, we set out to investigate nucleotide/nucleoside formation by a simple dehydration reaction of the constituent building blocks (sugar, phosphate, and nucleobase) in the presence of amino acids (<i>i.e.</i> glycine,</b> <b>arginine, glutamic acid, threonine, methionine, phenylalanine and tryptophan). Herein, we report the first example of simultaneous formation of glycosidic bonds between ribose, purines, and pyrimidines under mild conditions without a catalyst or activated reagents, as well as nucleobase exchange. We observed not only the simultaneous formation of nucleotide and nucleoside isomers from several nucleobases, but also the selection of distribution of glycosylation products when glycine was present. This work shows how reaction networks of nucleotides and amino acids should be considered when exploring the emergence of catalytic networks in the context of molecular evolution. </b></p>


Author(s):  
Irene Suárez-Marina ◽  
Rebecca Turk-MacLeod ◽  
Yousef M. Abul-Haija ◽  
Piotr S. Gromski ◽  
Geoffrey Cooper ◽  
...  

<p><b>Research on the origin of nucleic acids and proteins has been approached by either multi-step synthesis or simple one-pot reactions, but exploration of their prebiotic chemistry is normally done separately. However, if nucleotides and amino acids co-existed on early Earth, their mutual interactions and reactivity should be considered in exploring the emergence of complex chemical systems that can ultimately evolve. To explore this idea, we set out to investigate nucleotide/nucleoside formation by a simple dehydration reaction of the constituent building blocks (sugar, phosphate, and nucleobase) in the presence of amino acids (<i>i.e.</i> glycine,</b> <b>arginine, glutamic acid, threonine, methionine, phenylalanine and tryptophan). Herein, we report the first example of simultaneous formation of glycosidic bonds between ribose, purines, and pyrimidines under mild conditions without a catalyst or activated reagents, as well as nucleobase exchange. We observed not only the simultaneous formation of nucleotide and nucleoside isomers from several nucleobases, but also the selection of distribution of glycosylation products when glycine was present. This work shows how reaction networks of nucleotides and amino acids should be considered when exploring the emergence of catalytic networks in the context of molecular evolution. </b></p>


2019 ◽  
Author(s):  
Sebastien Alazet ◽  
Michael West ◽  
Purvish Patel ◽  
Sophie Rousseaux

The efficient preparation of nitrile-containing building blocks is of interest due to their utility as synthetic intermediates and their prevalence in pharmaceuticals. As a result, significant efforts have been made to develop methods to access these motifs which rely on safer and non-toxic sources of CN. Herein, we report that 2-methyl-2-phenylpropanenitrile is an efficient, non-toxic, electrophilic CN source for the synthesis of nitrile-bearing quaternary centers via a thermodynamic transnitrilation and anion-relay strategy. This one-pot process leads to nitrile products resulting from the gem-difunctionalization of alkyl lithium reagents.<br>


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4415
Author(s):  
Sergey A. Usachev ◽  
Diana I. Nigamatova ◽  
Daria K. Mysik ◽  
Nikita A. Naumov ◽  
Dmitrii L. Obydennov ◽  
...  

A convenient and general method for the direct synthesis of 2-aryl-6-(trifluoromethyl)-4-pyrones and 2-aryl-5-bromo-6-(trifluoromethyl)-4-pyrones has been developed on the basis of one-pot oxidative cyclization of (E)-6-aryl-1,1,1-trifluorohex-5-ene-2,4-diones via a bromination/dehydrobromination approach. This strategy was also applied for the preparation of 2-phenyl-6-polyfluoroalkyl-4-pyrones and their 5-bromo derivatives. Conditions of chemoselective enediones bromination were found and the key intermediates of the cyclization of bromo-derivatives to 4-pyrones were characterized. Synthetic application of the prepared 4-pyrones has been demonstrated for the construction of biologically important CF3-bearing azaheterocycles, such as pyrazoles, pyridones, and triazoles.


Author(s):  
Philipp Natho ◽  
Zeyu Yang ◽  
Lewis Allen ◽  
Juliette Rey ◽  
Andrew J P White ◽  
...  

A transition-metal-free strategy for the synthesis of 2-(cyclobut-1-en-1-yl)-1H-indoles under mild conditions is described herein. A series of substituted 2-(cyclobut-1-en-1-yl)-1H-indoles are accessed by a one-pot cyclobutenylation/deprotection cascade from N-Boc protected indoles....


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1214
Author(s):  
Sergey N. Podyachev ◽  
Rustem R. Zairov ◽  
Asiya R. Mustafina

The present review is aimed at highlighting outlooks for cyclophanic 1,3-diketones as a new type of versatile ligands and building blocks of the nanomaterial for sensing and bioimaging. Thus, the main synthetic routes for achieving the structural diversity of cyclophanic 1,3-diketones are discussed. The structural diversity is demonstrated by variation of both cyclophanic backbones (calix[4]arene, calix[4]resorcinarene and thiacalix[4]arene) and embedding of different substituents onto lower or upper macrocyclic rims. The structural features of the cyclophanic 1,3-diketones are correlated with their ability to form lanthanide complexes exhibiting both lanthanide-centered luminescence and magnetic relaxivity parameters convenient for contrast effect in magnetic resonance imaging (MRI). The revealed structure–property relationships and the applicability of facile one-pot transformation of the complexes to hydrophilic nanoparticles demonstrates the advantages of 1,3-diketone calix[4]arene ligands and their complexes in developing of nanomaterials for sensing and bioimaging.


Sign in / Sign up

Export Citation Format

Share Document