scholarly journals A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants

2020 ◽  
Vol 3 (6) ◽  
pp. 1900187
Author(s):  
Yinfeng He ◽  
Ruggero Foralosso ◽  
Gustavo F. Trindade ◽  
Alexander Ilchev ◽  
Laura Ruiz‐Cantu ◽  
...  
2020 ◽  
Vol 3 (6) ◽  
pp. 2070012
Author(s):  
Yinfeng He ◽  
Ruggero Foralosso ◽  
Gustavo F. Trindade ◽  
Alexander Ilchev ◽  
Laura Ruiz‐Cantu ◽  
...  

Author(s):  
Yuliya Prozherina ◽  

3D printing of drugs is an innovative and cost-effective technology, which is a major step towards personalized medicine. This technology can be used for the development of controlled-release drugs; fixed-dose combination drugs, as well as for the creation of orodispersible dosage forms. The global 3D drug market is still largely at the research stage, but its rapid growth is expected in the coming decade [1].


2021 ◽  
Vol 14 (2) ◽  
pp. 143
Author(s):  
Julius Krause ◽  
Laura Müller ◽  
Dorota Sarwinska ◽  
Anne Seidlitz ◽  
Malgorzata Sznitowska ◽  
...  

In the treatment of pediatric diseases, suitable dosages and dosage forms are often not available for an adequate therapy. The use of innovative additive manufacturing techniques offers the possibility of producing pediatric dosage forms. In this study, the production of mini tablets using fused deposition modeling (FDM)-based 3D printing was investigated. Two pediatric drugs, caffeine and propranolol hydrochloride, were successfully processed into filaments using hyprolose and hypromellose as polymers. Subsequently, mini tablets with diameters between 1.5 and 4.0 mm were printed and characterized using optical and thermal analysis methods. By varying the number of mini tablets applied and by varying the diameter, we were able to achieve different release behaviors. This work highlights the potential value of FDM 3D printing for the on-demand production of patient individualized, small-scale batches of pediatric dosage forms.


2021 ◽  
Vol 598 ◽  
pp. 120361 ◽  
Author(s):  
S. Henry ◽  
A. Samaro ◽  
F.H. Marchesini ◽  
B. Shaqour ◽  
J. Macedo ◽  
...  

1993 ◽  
Vol 91 (1) ◽  
pp. 75-84 ◽  
Author(s):  
F. Gilbert McMahon ◽  
Ramon Vargas ◽  
Philip Leese ◽  
Brian Crawford ◽  
Ann Konecny ◽  
...  

Author(s):  
Rishi Thakkar ◽  
Yu Zhang ◽  
Jiaxiang Zhang ◽  
Mohammed Maniruzzaman

AbstractThis study demonstrated the first case of combining novel continuous granulation with powder-based pharmaceutical 3-dimensional (3D) printing processes to enhance the dissolution rate and physical properties of a poorly water-soluble drug. Powder bed fusion (PBF) and binder jetting 3D printing processes have gained much attention in pharmaceutical dosage form manufacturing in recent times. Although powder bed-based 3D printing platforms have been known to face printing and uniformity problems due to the inherent poor flow properties of the pharmaceutical physical mixtures (feedstock). Moreover, techniques such as binder jetting currently do not provide any solubility benefits to active pharmaceutical ingredients (APIs) with poor aqueous solubility (>40% of marketed drugs). For this study, a hot-melt extrusion-based versatile granulation process equipped with UV-Vis process analytical technology (PAT) tools for the in-line monitoring of critical quality attributes (i.e., solid-state) of indomethacin was developed. The collected granules with enhanced flow properties were mixed with vinylpyrrolidone-vinyl acetate copolymer and a conductive excipient for efficient sintering. These mixtures were further characterized for their bulk properties observing an excellent flow and later subjected to a PBF-3D printing process. The physical mixtures, processed granules, and printed tablets were characterized using conventional as well as advanced solid-state characterization. These characterizations revealed the amorphous nature of the drug in the processed granules and printed tablets. Further, the in vitro release testing of the tablets with produced granules as a reference standard depicted a notable solubility advantage (100% drug released in 5 minutes at >pH 6.8) over the pure drug and the physical mixture. Our developed system known as DosePlus combines innovative continuous granulation and PBF-3D printing process which can potentially improve the physical properties of the bulk drug and formulations in comparison to when used in isolation. This process can further find application in continuous manufacturing of granules and additive manufacturing of pharmaceuticals to produce dosage forms with excellent uniformity and solubility advantage.Abstract Figure


Author(s):  
SHANKHADIP NANDI

3D printing technology is a rapid prototyping process based on computer-aided design software that is proficient to construct solid objects with various geometrics by depositing numerous layers in a sequence. The major advantages of three-dimensional printing (3DP) technology over the traditional manufacturing of pharmaceuticals include the customization of medications with individually adjusted doses, on-demand tailored manufacturing, unprecedented flexibility in the design, manufacturing of complex and sophisticated solid dosage forms, and economic benefits. Recently, many researchers have been invested their efforts in applying 3DP technology to the pharmaceutical development of drug products and different drug delivery systems. Selective laser sintering, fused deposition modeling, semi-solid extrusion, stereolithography, etc., are the multiple 3DP technologies that can be established in several customized and programmable medicines. Sublingual, orodispersible, and fast-dissolving drug delivery formulations by 3DP technology have been already manufactured. Controlled-release formulations with different characteristics, doughnut-shaped multi-layered tablets with linear release kinetics, and drug-loaded tablets with modified-release characteristics are recently fabricated using 3DP. However, few 3DP methods produce uneven shapes of dosage forms and comparatively porous structures. Cost of transition, adaptation to the existing facility, achieving regulatory approval, etc., are the present challenges that can restrict the extensive application of 3DP technology to pharmaceutical products. Intense research work for modifying the 3DP methods is simultaneously sustained for by-passing the flaws and current limitations of this technology. 3DP technology can act as a convenient and potential tool for the pharmaceutical industry which will set a revolutionary manufacturing style in the near future to facilitate patient-centered health care.


Sign in / Sign up

Export Citation Format

Share Document