scholarly journals High‐Throughput Discovery of Novel Cubic Crystal Materials Using Deep Generative Neural Networks

2021 ◽  
pp. 2100566
Author(s):  
Yong Zhao ◽  
Mohammed Al‐Fahdi ◽  
Ming Hu ◽  
Edirisuriya M. D. Siriwardane ◽  
Yuqi Song ◽  
...  
Author(s):  
Marcus Vinicius Vieira Borges ◽  
Janielle de Oliveira Garcia ◽  
Tays Silva Batista ◽  
Alexsandra Nogueira Martins Silva ◽  
Fabio Henrique Rojo Baio ◽  
...  

AbstractIn forest modeling to estimate the volume of wood, artificial intelligence has been shown to be quite efficient, especially using artificial neural networks (ANNs). Here we tested whether diameter at breast height (DBH) and the total plant height (Ht) of eucalyptus can be predicted at the stand level using spectral bands measured by an unmanned aerial vehicle (UAV) multispectral sensor and vegetation indices. To do so, using the data obtained by the UAV as input variables, we tested different configurations (number of hidden layers and number of neurons in each layer) of ANNs for predicting DBH and Ht at stand level for different Eucalyptus species. The experimental design was randomized blocks with four replicates, with 20 trees in each experimental plot. The treatments comprised five Eucalyptus species (E. camaldulensis, E. uroplylla, E. saligna, E. grandis, and E. urograndis) and Corymbria citriodora. DBH and Ht for each plot at the stand level were measured seven times in separate overflights by the UAV, so that the multispectral sensor could obtain spectral bands to calculate vegetation indices (VIs). ANNs were then constructed using spectral bands and VIs as input layers, in addition to the categorical variable (species), to predict DBH and Ht at the stand level simultaneously. This report represents one of the first applications of high-throughput phenotyping for plant size traits in Eucalyptus species. In general, ANNs containing three hidden layers gave better statistical performance (higher estimated r, lower estimated root mean squared error–RMSE) due to their greater capacity for self-learning. Among these ANNs, the best contained eight neurons in the first layer, seven in the second, and five in the third (8 − 7 − 5). The results reported here reveal the potential of using the generated models to perform accurate forest inventories based on spectral bands and VIs obtained with a UAV multispectral sensor and ANNs, reducing labor and time.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 230
Author(s):  
Jaechan Cho ◽  
Yongchul Jung ◽  
Seongjoo Lee ◽  
Yunho Jung

Binary neural networks (BNNs) have attracted significant interest for the implementation of deep neural networks (DNNs) on resource-constrained edge devices, and various BNN accelerator architectures have been proposed to achieve higher efficiency. BNN accelerators can be divided into two categories: streaming and layer accelerators. Although streaming accelerators designed for a specific BNN network topology provide high throughput, they are infeasible for various sensor applications in edge AI because of their complexity and inflexibility. In contrast, layer accelerators with reasonable resources can support various network topologies, but they operate with the same parallelism for all the layers of the BNN, which degrades throughput performance at certain layers. To overcome this problem, we propose a BNN accelerator with adaptive parallelism that offers high throughput performance in all layers. The proposed accelerator analyzes target layer parameters and operates with optimal parallelism using reasonable resources. In addition, this architecture is able to fully compute all types of BNN layers thanks to its reconfigurability, and it can achieve a higher area–speed efficiency than existing accelerators. In performance evaluation using state-of-the-art BNN topologies, the designed BNN accelerator achieved an area–speed efficiency 9.69 times higher than previous FPGA implementations and 24% higher than existing VLSI implementations for BNNs.


2019 ◽  
Vol 17 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Vadim Demichev ◽  
Christoph B. Messner ◽  
Spyros I. Vernardis ◽  
Kathryn S. Lilley ◽  
Markus Ralser

2019 ◽  
Vol 150 (23) ◽  
pp. 234111 ◽  
Author(s):  
Peter C. St. John ◽  
Caleb Phillips ◽  
Travis W. Kemper ◽  
A. Nolan Wilson ◽  
Yanfei Guan ◽  
...  

2020 ◽  
Author(s):  
Jeremy W. Linsley ◽  
Drew A. Linsley ◽  
Josh Lamstein ◽  
Gennadi Ryan ◽  
Kevan Shah ◽  
...  

AbstractCell death is an essential process in biology that must be accounted for in live microscopy experiments. Nevertheless, cell death is difficult to detect without perturbing experiments with stains, dyes or biosensors that can bias experimental outcomes, lead to inconsistent results, and reduce the number of processes that can be simultaneously labelled. These additional steps also make live microscopy difficult to scale for high-throughput screening because of the cost, labor, and analysis they entail. We address this fundamental limitation of live microscopy with biomarker-optimized convolutional neural networks (BO-CNN): computer vision models trained with a ground truth biosensor that detect live cells with superhuman, 96% accuracy more than 100 times faster than previous methods. Our models learn to identify important morphological characteristics associated with cell vitality without human input or additional perturbations, and to generalize to other imaging modalities and cell types for which they have no specialized training. We demonstrate that we can interpret decisions from BO-CNN models to gain biological insight into the patterns they use to achieve superhuman accuracy. The BO-CNN approach is broadly useful for live microscopy, and affords a powerful new paradigm for advancing the state of high-throughput imaging in a variety of contexts.


Sign in / Sign up

Export Citation Format

Share Document