Molecular Crowding Effect in Aqueous Electrolytes to Suppress Hydrogen Reduction Reaction and Enhance Electrochemical Nitrogen Reduction

2021 ◽  
Vol 11 (36) ◽  
pp. 2101699
Author(s):  
Ying Guo ◽  
Jinxing Gu ◽  
Rong Zhang ◽  
Shaoce Zhang ◽  
Zhen Li ◽  
...  
2019 ◽  
Author(s):  
Bo Hu ◽  
maowei hu ◽  
Tianbiao Liu

<p>Electrocatalytic synthesis of ammonia from nitrogen (N<sub>2</sub>) representsa highly attractive approach to produce ammonia under more energy efficient and CO<sub>2</sub>-free conditions in comparison the well-known Haber-Bosch process. electrocatalytic N2 fixation has been under intensive exploration over last few years and has become a hot topic in catalysis. A number of heterogeneous electrocatalysts have been reported with various claimed performance for NRR recently. However, the research practice in this emerging field has been problematic as demonstrated in the submitted work.</p>Metal nitrides have been studied both theoretically and experimentally indicating their potential capability of electrocatalytic N<sub>2</sub>reduction. However, the nitrogen contained nature and chemical stability problem of the nitride materials could bring in ambiguous results. In the submitted manuscript, it is revealed that Mo<sub>2</sub>N could undergo fast chemical decomposition in aqueous electrolytes to generate ammonium (NH<sub>4</sub><sup>+</sup>) and showed no catalytic activity for NRR. <i><u>The present results call urgent attention to carefully evaluate the catalytic nature of nitrogen reduction reaction (NRR) by nitrogen containing materials.</u></i>In addition, we also highlight apparent pitfalls to avoid in determining catalytic NNR.


2019 ◽  
Author(s):  
Bo Hu ◽  
maowei hu ◽  
Lance Seefeldt ◽  
Tianbiao Liu

<p>Electrocatalytic synthesis of ammonia from nitrogen (N<sub>2</sub>) representsa highly attractive approach to produce ammonia under more energy efficient and CO<sub>2</sub>-free conditions in comparison the well-known Haber-Bosch process. electrocatalytic N2 fixation has been under intensive exploration over last few years and has become a hot topic in catalysis. A number of heterogeneous electrocatalysts have been reported with various claimed performance for NRR recently. However, the research practice in this emerging field has been problematic as demonstrated in the submitted work.</p>Metal nitrides have been studied both theoretically and experimentally indicating their potential capability of electrocatalytic N<sub>2</sub>reduction. However, the nitrogen contained nature and chemical stability problem of the nitride materials could bring in ambiguous results. In the submitted manuscript, it is revealed that Mo<sub>2</sub>N could undergo fast chemical decomposition in aqueous electrolytes to generate ammonium (NH<sub>4</sub><sup>+</sup>) and showed no catalytic activity for NRR. <i><u>The present results call urgent attention to carefully evaluate the catalytic nature of nitrogen reduction reaction (NRR) by nitrogen containing materials.</u></i>In addition, we also highlight apparent pitfalls to avoid in determining catalytic NNR.


2019 ◽  
Author(s):  
Bo Hu ◽  
maowei hu ◽  
Lance Seefeldt ◽  
Tianbiao Liu

<p>Electrocatalytic synthesis of ammonia from nitrogen (N<sub>2</sub>) representsa highly attractive approach to produce ammonia under more energy efficient and CO<sub>2</sub>-free conditions in comparison the well-known Haber-Bosch process. electrocatalytic N2 fixation has been under intensive exploration over last few years and has become a hot topic in catalysis. A number of heterogeneous electrocatalysts have been reported with various claimed performance for NRR recently. However, the research practice in this emerging field has been problematic as demonstrated in the submitted work.</p>Metal nitrides have been studied both theoretically and experimentally indicating their potential capability of electrocatalytic N<sub>2</sub>reduction. However, the nitrogen contained nature and chemical stability problem of the nitride materials could bring in ambiguous results. In the submitted manuscript, it is revealed that Mo<sub>2</sub>N could undergo fast chemical decomposition in aqueous electrolytes to generate ammonium (NH<sub>4</sub><sup>+</sup>) and showed no catalytic activity for NRR. <i><u>The present results call urgent attention to carefully evaluate the catalytic nature of nitrogen reduction reaction (NRR) by nitrogen containing materials.</u></i>In addition, we also highlight apparent pitfalls to avoid in determining catalytic NNR.


Author(s):  
Jaecheol Choi ◽  
Hoang-Long Du ◽  
Manjunath Chatti ◽  
Bryan H. R. Suryanto ◽  
Alexandr Simonov ◽  
...  

We demonstrate that bismuth exhibits no measurable electrocatalytic activity for the nitrogen reduction reaction to ammonia in aqueous electrolyte solutions, contrary to several recent reports on the highly impressive rates of Bi-catalysed electrosynthesis of NH<sub>3</sub> from N<sub>2</sub>.


2021 ◽  
Vol 23 (7) ◽  
pp. 4178-4186
Author(s):  
Shiqiang Liu ◽  
Zhiwen Cheng ◽  
Yawei Liu ◽  
Xiaoping Gao ◽  
Yujia Tan ◽  
...  

Designing atomically dispersed metal catalysts for the nitrogen reduction reaction (NRR) is an effective approach to achieve better energy conversion efficiencies.


2021 ◽  
pp. 150801
Author(s):  
Jiabin Tan ◽  
Xiaobo H ◽  
Fengxiang Yin ◽  
Xin Liang ◽  
Guoru Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document