crowding effect
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 36)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Emilia Dzień ◽  
Dorota Dudek ◽  
Danuta Witkowska ◽  
Magdalena Rowińska-Żyrek

AbstractMembrane environment often has an important effect on the structure, and therefore also on the coordination mode of biologically relevant metal ions. This is also true in the case of Cu(II) coordination to amylin analogues—rat amylin, amylin1–19, pramlintide and Ac-pramlintide, which offer N-terminal amine groups and/or histidine imidazoles as copper(II) anchoring sites. Complex stabilities are comparable, with the exception of the very stable Cu(II)–amylin1–19, which proves that the presence of the amylin C-terminus lowers its affinity for copper(II); although not directly involved, its appropriate arrangement sterically prevents early metal binding. Most interestingly, in membrane-mimicking solution, the Cu(II) affinities of amylin analogues are lower than the ones in water, probably due to the crowding effect of the membrane solution and the fact that amide coordination occurs at higher pH, which happens most likely because the α-helical structure, imposed by the membrane-mimicking solvent, prevents the amides from binding at lower pH, requiring a local unwinding of the α-helix.


Author(s):  
Ali Raza ◽  
Muhammad Rafiq ◽  
Jan Awrejcewicz ◽  
Nauman Ahmed ◽  
Muhammad Mohsin

AbstractCountries affected by the coronavirus epidemic have reported many infected cases and deaths based on world health statistics. The crowding factor, which we named "crowding effects," plays a significant role in spreading the diseases. However, the introduction of vaccines marks a turning point in the rate of spread of coronavirus infections. Modeling both effects is vastly essential as it directly impacts the overall population of the studied region. To determine the peak of the infection curve by considering the third strain, we develop a mathematical model (susceptible–infected–vaccinated–recovered) with reported cases from August 01, 2021, till August 29, 2021. The nonlinear incidence rate with the inclusion of both effects is the best approach to analyze the dynamics. The model's positivity, boundedness, existence, uniqueness, and stability (local and global) are addressed with the help of a reproduction number. In addition, the strength number and second derivative Lyapunov analysis are examined, and the model was found to be asymptotically stable. The suggested parameters efficiently control the active cases of the third strain in Pakistan. It was shown that a systematic vaccination program regulates the infection rate. However, the crowding effect reduces the impact of vaccination. The present results show that the model can be applied to other countries' data to predict the infection rate.


Author(s):  
Katarzyna Majerczak ◽  
Ophelie Squillace ◽  
Zhiwei Shi ◽  
Zhanping Zhang ◽  
Zhenyu J. Zhang

AbstractThe diffusion kinetics of a molecular probe—rhodamine B—in ternary aqueous solutions containing poly(vinyl alcohol), glycerol, and surfactants was investigated using fluorescence correlation spectroscopy and dynamic light scattering. We show that the diffusion characteristics of rhodamine B in such complex systems is determined by a synergistic effect of molecular crowding and intermolecular interactions between chemical species. The presence of glycerol has no noticeable impact on rhodamine B diffusion at low concentration, but significantly slows down the diffusion of rhodamine B above 3.9% (w/v) due to a dominating steric inhibition effect. Furthermore, introducing surfactants (cationic/nonionic/anionic) to the system results in a decreased diffusion coefficient of the molecular probe. In solutions containing nonionic surfactant, this can be explained by an increased crowding effect. For ternary poly(vinyl alcohol) solutions containing cationic or anionic surfactant, surfactant—polymer and surfactant—rhodamine B interactions alongside the crowding effect of the molecules slow down the overall diffusivity of rhodamine B. The results advance our insight of molecular migration in a broad range of industrial complex formulations that incorporate multiple compounds, and highlight the importance of selecting the appropriate additives and surfactants in formulated products.


2021 ◽  
Author(s):  
Emilia Dzień ◽  
Dorota Dudek ◽  
Danuta Witkowska ◽  
Magdalena Rowińska-Żyrek

Abstract Membrane environment often has an important effect on the structure, and therefore also on the coordination mode of biologically relevant metal ions.This is also true in the case of Cu(II) coordination to amylin analogues – rat amylin, amylin1-19, pramlintide and Ac-pramlintide, which offer N-terminal amine groups and/or histidine imidazoles as copper(II) anchoring sites. Complex stabilities are comparable, with the exception of the very stable Cu(II)-amylin1-19, which proves that the presence of the amylin C-terminus lowers its affinity for copper(II); although not directly involved, its appropriate arrangement sterically prevents early metal binding.Most interestingly, in membrane-mimicking solution, the Cu(II) affinities of amylin analogues are lower than the ones in water, probably due to the crowding effect of the membrane solution and the fact that amide coordination occurs at higher pH, which happens most likely because the α-helical structure, imposed by the membrane-mimicking solvent, prevents the amides from binding at lower pH, requiring a local unwinding of the α-helix.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012084
Author(s):  
A E Ivanov ◽  
A V Aladov ◽  
N Atalnishnikh ◽  
A E Chernyakov ◽  
A L Zakgeim

Abstract The goal of the study is examination of current-crowding effect in high power AlInGaN LEDs. This effect was presented by mapping of EL (electroluminescence) near filed under high pulse current. LED chip of vertical design was study in high range of current (10−9 ÷ 70A). This operating mode of LEDs are interesting for different applications, such as pumping lasers, VLC and LiFi, as well as for investigation accelerated degradation process of LEDs.


2021 ◽  
pp. 100207
Author(s):  
Javaid Ali ◽  
Ali Raza ◽  
Nauman Ahmed ◽  
Ali Ahmadian ◽  
Muhammad Rafiq ◽  
...  

2021 ◽  
Author(s):  
Bernt Skottun

Visual crowding occurs when a target stimulus is presented along with flanking stimuli. These tend to reduce the visibility of the target. It has been found that adding additional flanking stimuli may reduce the crowding effect. This has been termed "uncrowding". It has previously been demonstrated that interference in the stimuli may have effects similar to visual crowding. Interference takes place in the stimuli and is unrelated to vision. The question is then: Can adding additional flanking stimuli reduce the interference effect of initial flanking stimuli in a manner consistent with uncrowding. The present simple calculations indicate that this is very much a possibility.


2021 ◽  
Author(s):  
Paul O. Leisher ◽  
Michelle Labrecque ◽  
Kevin McClune ◽  
Elliot Burke ◽  
Daniel Renner ◽  
...  

2021 ◽  
Author(s):  
Carla C. Gestich ◽  
Víctor Arroyo-Rodríguez ◽  
Bruno H. Saranholi ◽  
Rogério G. T. da Cunha ◽  
Eleonore Z. F. Setz ◽  
...  
Keyword(s):  

Author(s):  
Suvrat Dhanorkar ◽  
Gordon Burtch

Despite their promise, popularity, and rapid growth, the transit implications of ride-hailing platforms (e.g., Uber, Lyft) are not altogether clear. On the one hand, ride-hailing services can provide pooling (i.e., traffic reductions) advantages by efficiently matching customer demand (i.e., trips) with resources (i.e., cars) or by facilitating car-sharing. On the other hand, ride-hailing may also induce extra travel because of increased convenience and travel mode substitution, which may create crowding (i.e., traffic increases). We seek to reconcile these divergent perspectives here, exploring the heterogeneous determinants of ride-hailing’s effects. Taking advantage of Uber’s staggered entry into various geographic markets in California, we execute a regression-based difference-in-differences analysis to estimate the impact of ride-hailing services on traffic volumes. Using monthly micro data from more than 9,000 vehicle detector station units deployed across California, we show that Uber’s effect (either pooling or crowding) on traffic depends on various contextual factors. We find some evidence of pooling effects on weekdays; however, Uber’s entry leads to significant crowding effects on weekends. Furthermore, the crowding effect is amplified on interior roads and in areas characterized by high population density. Although ride-hailing seems to have a substitution effect on public transportation, we find ride-hailing services may have a complementary effect for carpooling users. Finally, we show that premium ride-hailing services (e.g., Uber Black) almost exclusively lead to a crowding effect. We conduct a battery of robustness tests (e.g., propensity score matching, alternative treatment approaches, placebo tests) to ensure the consistency of our findings.


Sign in / Sign up

Export Citation Format

Share Document