molecular crowding
Recently Published Documents


TOTAL DOCUMENTS

364
(FIVE YEARS 93)

H-INDEX

50
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Cary R. Boyd-Shiwarski ◽  
Daniel J. Shiwarski ◽  
Shawn E. Griffiths ◽  
Rebecca T. Beacham ◽  
Logan Norrell ◽  
...  

When challenged by hypertonicity, dehydrated cells must defend their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless droplets, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to rescue volume. The formation of WNK1 condensates is driven by its intrinsically disordered C-terminus, whose evolutionarily conserved signatures are necessary for efficient phase separation and volume recovery. This disorder-encoded phase behavior occurs within physiological constraints and is activated in vivo by molecular crowding rather than changes in cell size. This allows WNK1 to bypass a strengthened ionic milieu that favors kinase inactivity and reclaim cell volume through condensate-mediated signal amplification. Thus, WNK kinases are physiological crowding sensors that phase separate to coordinate a cell volume rescue response.


2022 ◽  
Author(s):  
Bengang Xing ◽  
Germain Kwek ◽  
Shonya Lingesh ◽  
Sayba Zafrin Chowdhury

An unconventional environment-responsive molecular crowding via specific binding between small molecule peptide inhibitor derivatives and overexpressed tumour enzyme has been developed. Assemblies of such short peptides selectively localize on tumour...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kadir. A. Ozcan ◽  
Layla T. Ghaffari ◽  
Aaron R. Haeusler

AbstractA nucleotide repeat expansion (NRE), (G4C2)n, located in a classically noncoding region of C9orf72 (C9), is the most common genetic mutation associated with ALS/FTD. There is increasing evidence that nucleic acid structures formed by the C9-NRE may both contribute to ALS/FTD, and serve as therapeutic targets, but there is limited characterization of these nucleic acid structures under physiologically and disease relevant conditions. Here we show in vitro that the C9-NRE DNA can form both parallel and antiparallel DNA G-quadruplex (GQ) topological structures and that the structural preference of these DNA GQs can be dependent on the molecular crowding conditions. Additionally, 5-methylcytosine DNA hypermethylation, which is observed in the C9-NRE locus in some patients, has minimal effects on GQ topological preferences. Finally, molecular dynamic simulations of methylated and nonmethylated GQ structures support in vitro data showing that DNA GQ structures formed by the C9-NRE DNA are stable, with structural fluctuations limited to the cytosine-containing loop regions. These findings provide new insight into the structural polymorphic preferences and stability of DNA GQs formed by the C9-NRE in both the methylated and nonmethylated states, as well as reveal important features to guide the development of upstream therapeutic approaches to potentially attenuate C9-NRE-linked diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aji Alex M. Raynold ◽  
Danyang Li ◽  
Lan Chang ◽  
Julien E. Gautrot

AbstractIn contrast to the processes controlling the complexation, targeting and uptake of polycationic gene delivery vectors, the molecular mechanisms regulating their cytoplasmic dissociation remains poorly understood. Upon cytosolic entry, vectors become exposed to a complex, concentrated mixture of molecules and biomacromolecules. In this report, we characterise the cytoplasmic interactome associated with polycationic vectors based on poly(dimethylaminoethyl methacrylate) (PDMAEMA) and poly(2-methacrylolyloxyethyltrimethylammonium chloride) (PMETAC) brushes. To quantify the contribution of different classes of low molar mass molecules and biomacromolecules to RNA release, we develop a kinetics model based on competitive binding. Our results identify the importance of competition from highly charged biomacromolecules, such as cytosolic RNA, as a primary regulator of RNA release. Importantly, our data indicate the presence of ribosome associated proteins, proteins associated with translation and transcription factors that may underly a broader impact of polycationic vectors on translation. In addition, we bring evidence that molecular crowding modulates competitive binding and demonstrate how the modulation of such interactions, for example via quaternisation or the design of charge-shifting moieties, impacts on the long-term transfection efficiency of polycationic vectors. Understanding the mechanism regulating cytosolic dissociation will enable the improved design of cationic vectors for long term gene release and therapeutic efficacy.


2021 ◽  
Author(s):  
Wenkang Wang ◽  
Cheng Yang ◽  
Xiaowei Chi ◽  
Jiahe Liu ◽  
Bo Wen ◽  
...  

eScience ◽  
2021 ◽  
Author(s):  
Mengke Peng ◽  
Li Wang ◽  
Longbin Li ◽  
Zhongyou Peng ◽  
Xiannong Tang ◽  
...  

Author(s):  
Akihisa Miyagawa ◽  
Hiroyuki Komatsu ◽  
Shigenori Nagatomo ◽  
Kiyoharu Nakatani

Sign in / Sign up

Export Citation Format

Share Document