An analysis of blow over and the steady state bed particle size distribution in a reacting fluid bed

AIChE Journal ◽  
1962 ◽  
Vol 8 (5) ◽  
pp. 714-720
Author(s):  
H. E. Hoelscher
2020 ◽  
Author(s):  
Cagla Temiz ◽  
Fikret Ari ◽  
Selen Deviren Saygin ◽  
Sefika Arslan ◽  
Mehmet Altay Unal ◽  
...  

<p>Soil cohesion (Co) is one of the most important physical soil characteristics and it is closely related to the basic soil properties and physical distribution forces (e.g. particle size distribution, pore sizes, shear strength) and so it is mostly determined by experimentally approaches with the help of other soil properties in general terms. Instead of using these assumptions, the fluidized bed approach provides an opportunity for direct measurement of intrinsic soil cohesion. In this study, soil cohesion development for different soil types was investigated with the fluid-bed method by which pressure drop in soil mass measures under increasing water pressures until the cohesion between particles disappears. For this purpose, 20 different soils varying with a wide range of relevant soil physical properties were sampled; such that clay, silt and sand contents varied between 2% and 56%, 1% and 50%, and 1% and 97%, respectively while porosity values were between 0.38 and 0.92. By those textural diversities of the soils, obtained cohesion values changed between 5203 N m<sup>-3</sup> and 212276 N m<sup>-3</sup>. Given results from regression analysis, a significant relationship was found between cohesion values of the soils and their porosity and silt fractions (R<sup>2</sup>: 86.6).These findings confirm that the method has a high potential to reflect differential conditions and show that soil cohesion could be modeled by such basic and easily obtainable parameters as particle size distribution and porosity, as well.<strong> </strong></p><p><strong>Key words</strong>; <strong>Mechanical soil cohesion, particle size distribution, fluidized bed approach, porosity</strong></p>


2001 ◽  
Vol 73 (6) ◽  
pp. 702-702
Author(s):  
Stefan Heinrich ◽  
Mirko Peglow ◽  
Matthias Ihlow ◽  
Markus Henneberg ◽  
Lothar Mörl

AIChE Journal ◽  
1996 ◽  
Vol 42 (6) ◽  
pp. 1612-1620 ◽  
Author(s):  
Patrick T. Spicer ◽  
Sotiris E. Pratsinis

2009 ◽  
Vol 146 (3) ◽  
pp. 466-476 ◽  
Author(s):  
Zheng-Hong Luo ◽  
Pei-Lin Su ◽  
Xiao-Zi You ◽  
De-Pan Shi ◽  
Jin-Cheng Wu

2019 ◽  
Author(s):  
Hong Ku Lee ◽  
Handol Lee ◽  
Kang-Ho Ahn

Abstract. Measuring particle size distributions precisely is an important concern in addressing environmental and human health-related issues. To measure particle size distribution, a scanning mobility particle sizer (SMPS) is often used. However, it is difficult to analyze particle size distribution under fast-changing concentration conditions because the SMPS cannot respond fast enough to reflect current conditions due to the time necessary for voltage scanning. In this research, we developed a new Nano-particle sizer (NPS), which consists of a multi-port differential mobility analyzer (MP-DMA) with 12 sampling ports and multi-condensation particle counters (M-CPCs) that simultaneously measure concentrations of particles classified by the sampling ports. The M-CPC can completely condense particles larger than 10 nm, and the total particle concentrations measured by each homemade CPC in the M-CPCs and an electrometer were in agreement up to 20,000 # cm−3. For particle classification tests on the MP-DMA, geometric standard deviations of the size distributions of classified particles were estimated in the range of 1.035–1.066. We conducted size distribution measurements under steady-state conditions using an aerosol generator and under unsteady conditions by switching the aerosol supply on/off. The data obtained by the NPS corresponded closely with the SMPS measurement data for the steady-state particle concentration case. In addition, the NPS could successfully capture the changes in particle size distribution under fast-changing particle concentration conditions. For the last, we presented the NPS measurement results of size distributions in common situation (cooking) as an exemplary real-world application.


2011 ◽  
Author(s):  
Anneleen Burggraeve ◽  
Thomas De Beer ◽  
Chris Vervaet ◽  
Jean Paul Remon ◽  
Mario Hellings ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document