scholarly journals Sensorized Foam Actuator with Intrinsic Proprioception and Tunable Stiffness Behavior for Soft Robots

2021 ◽  
pp. 2100022
Author(s):  
Saravana Prashanth Murali Babu ◽  
Francesco Visentin ◽  
Ali Sadeghi ◽  
Alessio Mondini ◽  
Fabian Meder ◽  
...  
2021 ◽  
Vol 3 (6) ◽  
pp. 2170050
Author(s):  
Saravana Prashanth Murali Babu ◽  
Francesco Visentin ◽  
Ali Sadeghi ◽  
Alessio Mondini ◽  
Fabian Meder ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 103
Author(s):  
Guolong Zhang ◽  
Guilin Yang ◽  
Yimin Deng ◽  
Tianjiang Zheng ◽  
Zaojun Fang ◽  
...  

The soft robots actuated by pressure, cables, thermal, electrosorption, combustion and smart materials are usually faced with the problems of poor portability, noise, weak load capacity, small deformation and high driving voltages. In this paper, a novel pneumatic generator for soft robots based on the gas-liquid reversible transition is proposed, which has the advantages of large output force, easy deformation, strong load capacity and high flexibility. The pressure of the pneumatic generator surges or drops flexibly through the reversible transformation between liquid and gas phase, making the soft actuator stretch or contract regularly, without external motors, compressors and pressure-regulating components. The gas-liquid reversible-transition actuation process is modeled to analyze its working mechanism and characteristics. The pressure during the pressurization stage increases linearly with a rate regulated by the heating power and gas volume. It decreases exponentially with the exponential term as a quadratic function of time at the fast depressurization stage, while with the exponential term as a linear function of time at the slow depressurization stage. The drop rate can be adjusted by changing the gas volume and cooling conditions. Furthermore, effectiveness has been verified through experiments of the prototype. The pressure reaches 25 bar with a rising rate of +3.935 bar/s when 5 mL weak electrolyte solution is heated at 800 W, and the maximum depressurization rate in air cooling is –3.796 bar/s. The soft finger actuated by the pneumatic generator can bend with an angular displacement of 67.5°. The proposed pneumatic generator shows great potential to be used for the structure, driving and sensing integration of artificial muscles.


2021 ◽  
pp. 027836492110218
Author(s):  
Sinan O. Demir ◽  
Utku Culha ◽  
Alp C. Karacakol ◽  
Abdon Pena-Francesch ◽  
Sebastian Trimpe ◽  
...  

Untethered small-scale soft robots have promising applications in minimally invasive surgery, targeted drug delivery, and bioengineering applications as they can directly and non-invasively access confined and hard-to-reach spaces in the human body. For such potential biomedical applications, the adaptivity of the robot control is essential to ensure the continuity of the operations, as task environment conditions show dynamic variations that can alter the robot’s motion and task performance. The applicability of the conventional modeling and control methods is further limited for soft robots at the small-scale owing to their kinematics with virtually infinite degrees of freedom, inherent stochastic variability during fabrication, and changing dynamics during real-world interactions. To address the controller adaptation challenge to dynamically changing task environments, we propose using a probabilistic learning approach for a millimeter-scale magnetic walking soft robot using Bayesian optimization (BO) and Gaussian processes (GPs). Our approach provides a data-efficient learning scheme by finding the gait controller parameters while optimizing the stride length of the walking soft millirobot using a small number of physical experiments. To demonstrate the controller adaptation, we test the walking gait of the robot in task environments with different surface adhesion and roughness, and medium viscosity, which aims to represent the possible conditions for future robotic tasks inside the human body. We further utilize the transfer of the learned GP parameters among different task spaces and robots and compare their efficacy on the improvement of data-efficient controller learning.


2021 ◽  
pp. 101268
Author(s):  
Mehdi Eshaghi ◽  
Mohsen Ghasemi ◽  
Korosh Khorshidi
Keyword(s):  

2021 ◽  
Vol 6 (2) ◽  
pp. 795-802
Author(s):  
Ryan L. Truby ◽  
Lillian Chin ◽  
Daniela Rus
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document