scholarly journals Real-Time Simulation for Control of Soft Robots With Self-Collisions Using Model Order Reduction for Contact Forces

2021 ◽  
Vol 6 (2) ◽  
pp. 3752-3759
Author(s):  
Olivier Goury ◽  
Bruno Carrez ◽  
Christian Duriez
2017 ◽  
Vol 326 ◽  
pp. 679-693 ◽  
Author(s):  
David González ◽  
Alberto Badías ◽  
Icíar Alfaro ◽  
Francisco Chinesta ◽  
Elías Cueto

2021 ◽  
Author(s):  
Nikolaos Tsokanas ◽  
Thomas Simpson ◽  
Roland Pastorino ◽  
Eleni Chatzi ◽  
Bozidar Stojadinovic

Hybrid simulation is a method used to investigate the dynamic response of a system subjected to a realistic loading scenario by combining numerical and physical substructures. To ensure high fidelity of the simulation results, it is often necessary to conduct hybrid simulation in real-time. One of the challenges arising in real-time hybrid simulation originates from high-dimensional nonlinear numerical substructures and, in particular, from the computational cost linked to the computation of their dynamic responses with sufficient accuracy. It is often the case that the simulation time-step must be decreased to capture the dynamic behavior of numerical substructures, thus resulting in longer computation. When such computation takes longer than the actual simulation time, time delays are introduced and the simulation timescale becomes distorted. In such a case, the only viable solution for doing hybrid simulation in real-time is to reduce the order of such complex numerical substructures.In this study, a model order reduction framework is proposed for real-time hybrid simulation, based on polynomial chaos expansion and feedforward neural networks. A parametric case study encompassing a virtual hybrid model is used to validate the framework. Selected numerical substructures are substituted with their respective reduced-order models. To determine the robustness of the framework, parameter sets are defined to cover the design space of interest. A comparison between the full- and reduced-order hybrid model response is delivered. The attained results demonstrate the performance of the proposed framework.


Author(s):  
Icíar Alfaro ◽  
David González ◽  
Sergio Zlotnik ◽  
Pedro Díez ◽  
Elías Cueto ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Wolfgang Witteveen ◽  
Florian Pichler

The mechanical response of multilayer sheet structures, such as leaf springs or car bodies, is largely determined by the nonlinear contact and friction forces between the sheets involved. Conventional computational approaches based on classical reduction techniques or the direct finite element approach have an inefficient balance between computational time and accuracy. In the present contribution, the method of trial vector derivatives is applied and extended in order to obtain a-priori trial vectors for the model reduction which are suitable for determining the nonlinearities in the joints of the reduced system. Findings show that the result quality in terms of displacements and contact forces is comparable to the direct finite element method but the computational effort is extremely low due to the model order reduction. Two numerical studies are presented to underline the method’s accuracy and efficiency. In conclusion, this approach is discussed with respect to the existing body of literature.


Sign in / Sign up

Export Citation Format

Share Document