scholarly journals Tendon‐Driven Auxetic Tubular Springs for Resilient Hopping Robots

2021 ◽  
pp. 2100152
Author(s):  
Young-Joo Lee ◽  
Shivangi Misra ◽  
Wei-Hsi Chen ◽  
Daniel E. Koditschek ◽  
Cynthia Sung ◽  
...  
Keyword(s):  
Author(s):  
Qimin Li ◽  
Haibing Zeng ◽  
Long Bai ◽  
Zijian An

Combining wheeled structure with hopping mechanism, this paper purposes a self-balanced hopping robot with hybrid motion pattern. The main actuator which is the cylindrical cam, optimized by particle swarm optimization (PSO), is equipped with the motor to control the hopping motion. Robotic system dynamics model is established and solved by Lagrangian method. After linearization, control characteristics of the system is obtained by classical control theory based on dynamics equations. By applying Adams and Matlab to simulate the system, hopping locomotion and self-balanced capability are validated respectively, and result shows that jump height can reach 750 mm theoretically. Then PID control scheme is developed and specific models of hardware and software are settled down accordingly. Finally, prototype is implemented and series of hopping experiments are conducted, showing that with different projectile angle, prototype can jump 550 mm in height and 460 mm in length, transcending majority of other existing hopping robots.


2018 ◽  
Vol 9 (1) ◽  
pp. 13 ◽  
Author(s):  
Long Bai ◽  
Fan Zheng ◽  
Xiaohong Chen ◽  
Yuanxi Sun ◽  
Junzhan Hou

This paper proposes the design and performance evaluation of a miniaturized continuous hopping robot RHop for unstructured terrain. The hopping mechanism of RHop is realized by an optimized geared symmetric closed-chain multi-bar mechanism that is transformed from the eight-bar mechanism, and the actuator of RHop is realized by a servo motor and the clockwork spring, thereby enabling RHop to realize continuous hopping while its motor rotates continuously only in one direction. Comparative simulations and experiments are conducted for RHop. The results show that RHop can realize better continuous hopping performance, as well as the improvement of energy conversion efficiency from 70.98% to 76.29% when the clockwork spring is applied in the actuator. In addition, comparisons with some state-of-the-art hopping robots are conducted, and the normalized results show that RHop has a better energy storage speed.


2013 ◽  
Vol 419 ◽  
pp. 693-700
Author(s):  
Saifullah Samo ◽  
Shu Yuan Ma ◽  
Bdran Sameh

It is very difficult for hopping robots to follow the trajectory without controlling hopping angle. A hopping angle controller is designed for combustion piston type hopping robot to adjust the angle of hop which is required to achieve a desired distance or height. So, the controller adds functionality to hopping robot for altering the hopping angle during operation according to obstacle height and obstacle distance. A proportional Integrated Derivative (PID) and Linear Quadratic Regulator (LQR) are designed and compared for adjusting hopping angle by using MATLAB / SIMULINK environment. As result, both controllers are capable to control hopping angle but PID gives better performance. An implementation of PID controller for the hopping angle control is given by using a DC motor. The experiment also carried out on prototype by using PID controller and found satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document