scholarly journals Connexin expression and gap junction communication compartments in the developing mouse limb

1992 ◽  
Vol 195 (3) ◽  
pp. 153-161 ◽  
Author(s):  
Dale W. Laird ◽  
S. Barbara Yancey ◽  
Lakshmi Bugga ◽  
Jean-Paul Revel
PLoS ONE ◽  
2011 ◽  
Vol 6 (6) ◽  
pp. e20792 ◽  
Author(s):  
Marco Heinrich ◽  
Andreas Oberbach ◽  
Nadine Schlichting ◽  
Jens-Uwe Stolzenburg ◽  
Jochen Neuhaus

Glia ◽  
2007 ◽  
Vol 55 (1) ◽  
pp. 104-117 ◽  
Author(s):  
Nilufer Esen ◽  
Debbie Shuffield ◽  
Mohsin MD. SYED ◽  
Tammy Kielian

2016 ◽  
Vol 22 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Aleksandra R. Dukic ◽  
David W. McClymont ◽  
Kjetil Taskén

Connexin 43 (Cx43), the predominant gap junction (GJ) protein, directly interacts with the A-kinase-anchoring protein (AKAP) Ezrin in human cytotrophoblasts and a rat liver epithelial cells (IAR20). The Cx43-Ezrin–protein kinase (PKA) complex facilitates Cx43 phosphorylation by PKA, which triggers GJ opening in cytotrophoblasts and IAR20 cells and may be a general mechanism regulating GJ intercellular communication (GJIC). Considering the importance of Cx43 GJs in health and disease, they are considered potential pharmaceutical targets. The Cx43-Ezrin interaction is a protein-protein interaction that opens possibilities for targeting with peptides and small molecules. For this reason, we developed a high-throughput cell-based assay in which GJIC can be assessed and new compounds characterized. We used two pools of IAR20 cells, calcein loaded and unloaded, that were mixed and allowed to attach. Next, GJIC was monitored over time using automated imaging via the IncuCyte imager. The assay was validated using known GJ inhibitors and anchoring peptide disruptors, and we further tested new peptides that interfered with the Cx43-Ezrin binding region and reduced GJIC. Although an AlphaScreen assay can be used to screen for Cx43-Ezrin interaction inhibitors, the cell-based assay described is an ideal secondary screen for promising small-molecule hits to help identify the most potent compounds.


1994 ◽  
Vol 107 (1) ◽  
pp. 83-95
Author(s):  
M.J. Neveu ◽  
J.R. Hully ◽  
K.L. Babcock ◽  
E.L. Hertzberg ◽  
B.J. Nicholson ◽  
...  

Although several abnormalities in gap junction (GJ) structure and/or function have been described in neoplasms, the molecular mechanisms responsible for many of the alterations remain unknown. The identification of a family of GJ proteins, termed connexins, prompted this study of connexin32 (Cx32), connexin26 (Cx26) and connexin43 (Cx43) expression during rat hepatocarcinogenesis. Using antibody, cDNA and cRNA probes, we investigated connexin mRNA and protein expression in preneoplastic and neoplastic rat livers. In normal liver, Cx32 is expressed in hepatocytes throughout the hepatic acinus, Cx26 is restricted to periportal hepatocytes, and Cx43 is expressed by mesothelial cells forming Glisson's capsule. Most preneoplastic altered hepatic foci generated by diethylnitrosamine (DEN) initiation and either phenobarbital (PB) or 2,3,7,8-dichlorodibenzo-p-dioxin (TCDD) promotion exhibited decreased Cx32 or increased Cx26 staining. Foci from either protocol failed to display Cx43 immunoreactivity. In the majority of PB-promoted foci, Cx32 immunoreactivity decreased independently of changes in mRNA abundance. Continuous thymidine labeling, following cessation of PB promotion, showed that downregulation of Cx32 staining is reversible in foci that are promoter-dependent for growth, but irreversible in lesions that are promoter-independent for growth. Hepatic neoplasms from rats initiated with DEN and promoted with PB or TCDD also displayed modified connexin expression. While all 24 neoplasms studied were deficient in normal punctate Cx32 and Cx26 staining, altered cellular localization of these proteins was apparent in some tumors. Immunoblotting of crude tissue extracts revealed that neoplasms with disordered Cx32 staining showed immunoreactive bands with altered electrophoretic mobility. These observations show that hepatomas may downregulate Cx32 expression through changes in the primary structure of Cx32 or by post-translational modifications. Northern blotting of total tumor mRNAs failed to demonstrate consistent changes in the abundance of Cx32, Cx26 or Cx43 transcripts. Some tumors expressed steady-state transcripts without observable immunoreactivity, indicating that some hepatomas downregulate connexin immunoreactivity independently of mRNA abundance. Increased levels of Cx43 mRNA and protein were found in several neoplasms, but immunostaining was always localized to nonparenchymal cells. Areas of bile duct proliferation and cholangiomas displayed Cx43 staining, whereas, cholangiocarcinomas were deficient in immunoreactivity. These findings show that alterations in the expression of connexins, by either downregulation or differential induction, represent common modifications during hepatocarcinogenesis. Although our results imply that connexins represent useful markers for the boundary between tumor promotion and progression, preneoplastic and neoplastic rat hepatocytes fail to use a common mechanism to modify connexin expression.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Brant E Isakson ◽  
Gerhard Kronke ◽  
Alexandra Kadl ◽  
Brian R Duling ◽  
Norbert Leitinger

2009 ◽  
Vol 171 (5) ◽  
pp. 513-520 ◽  
Author(s):  
Sylvain Gaillard ◽  
David Pusset ◽  
Sonia M. de Toledo ◽  
Michel Fromm ◽  
Edouard I. Azzam

2006 ◽  
Vol 102 (6) ◽  
pp. 1692-1698 ◽  
Author(s):  
Kirsten Wentlandt ◽  
Marina Samoilova ◽  
Peter L. Carlen ◽  
Hossam El Beheiry

2010 ◽  
Vol 30 (3) ◽  
pp. 193-200 ◽  
Author(s):  
Hongjun Zhu ◽  
Hegui Wang ◽  
Xiwen Zhang ◽  
Xiaofeng Hou ◽  
Kejiang Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document