Three new variants of glucose-6-phosphate dehydrogenase associated with chronic nonspherocytic hemolytic anemia: G-6-PD Lincoln Park, G-6-PD arlington heights, and G-6-PD West Town

1979 ◽  
Vol 6 (4) ◽  
pp. 353-360 ◽  
Author(s):  
George R. Honig ◽  
Evelina Habacon ◽  
Loyda N. Vida ◽  
Florinda Matsumoto ◽  
Ernest Beutler
Blood ◽  
1965 ◽  
Vol 25 (1) ◽  
pp. 92-95 ◽  
Author(s):  
IVO PANNACCIULLI ◽  
ALBERTO TIZIANELLO ◽  
FRANCO AJMAR ◽  
EMANUELE SALVIDIO

Abstract Two severe hemolytic crises, in a month’s period, were induced by primaquine in a glucose-6-phosphate dehydrogenase deficient Sardinian male. Young red blood cells tagged with Fe59 10 to 16 days earlier were destroyed in the second hemolytic episode. The implications of these experiments on the nature of drug-induced hemolysis in Caucasians are briefly discussed.


Blood ◽  
2012 ◽  
Vol 120 (20) ◽  
pp. 4123-4133 ◽  
Author(s):  
Allan Pamba ◽  
Naomi D. Richardson ◽  
Nick Carter ◽  
Stephan Duparc ◽  
Zul Premji ◽  
...  

AbstractDrug-induced acute hemolytic anemia led to the discovery of G6PD deficiency. However, most clinical data are from isolated case reports. In 2 clinical trials of antimalarial preparations containing dapsone (4,4′-diaminodiphenylsulfone; 2.5 mg/kg once daily for 3 days), 95 G6PD-deficient hemizygous boys, 24 G6PD-deficient homozygous girls, and 200 girls heterozygous for G6PD deficiency received this agent. In the first 2 groups, there was a maximum decrease in hemoglobin averaging −2.64 g/dL (range −6.70 to +0.30 g/dL), which was significantly greater than for the comparator group receiving artemether-lumefantrine (adjusted difference −1.46 g/dL; 95% confidence interval −1.76, −1.15). Hemoglobin concentrations were decreased by ≥ 40% versus pretreatment in 24/119 (20.2%) of the G6PD-deficient children; 13/119 (10.9%) required blood transfusion. In the heterozygous girls, the mean maximum decrease in hemoglobin was −1.83 g/dL (range +0.90 to −5.20 g/dL); 1 in 200 (0.5%) required blood transfusion. All children eventually recovered. All the G6PD-deficient children had the G6PD A− variant, ie, mutations V68M and N126D. Drug-induced acute hemolytic anemia in G6PD A− subjects can be life-threatening, depending on the nature and dosage of the drug trigger. Therefore, contrary to current perception, in clinical terms the A− type of G6PD deficiency cannot be regarded as mild. This study is registered at http://www.clinicaltrials.gov as NCT00344006 and NCT00371735.


2021 ◽  
pp. 49-56
Author(s):  
O. D. Ostroumova ◽  
S. A. Bliznyuk ◽  
A. I. Kochetkov ◽  
A. G. Komarova

One of the reasons for the development of hemolytic anemia (HA) can be drugs, including some antibacterial, non-steroidal anti-inflammatory, antitumor and antihypertensive drugs. It was found that the most common drug-induced hemolytic anemia (DIHA) develops against the background of taking antibacterial drugs. The true prevalence of DIHA is not known and is approximately one case per 1.0–1.2 million patients. The mechanisms of the occurrence of DIHA are divided into immune and metabolic (non-immune). The first mechanism is associated with the formation of haptens, the second option – with the formation of immune complexes, the third option is mediated by the formation of true autoantibodies to red blood cells, the fourth option of the immune mechanism of the occurrence of DIHA is non-immunological protein absorption on the membranes of red blood cells. The risk factors for the development of DIHA are not fully established. The most common hereditary risk factor for DIHA is glucose-6-phosphate dehydrogenase deficiency. The main method of diagnosing DIHA is a direct antiglobulin test (direct Coombs’ test). The temporal relationship between the use of the inducer drug and the development of HA symptoms is important. The treatment strategy of DIHA is determined by the severity of the disease. In all cases, treatment should be initiated with the identification and withdrawal of the drug that initiated the occurrence of HA. With the development of severe HA, hemodialysis may be required. Prevention of DIHA involves avoiding the use of drugs associated with a high risk of its development.


Blood ◽  
1982 ◽  
Vol 59 (2) ◽  
pp. 428-434 ◽  
Author(s):  
JL Vives Corrons ◽  
E Feliu ◽  
MA Pujades ◽  
F Cardellach ◽  
C Rozman ◽  
...  

Abstract Molecular, kinetic, and functional studies were carried out on erythrocytes and leukocytes in a Spanish male with G6PD deficiency, congenital nonspherocytic hemolytic anemia (CNSHA), and increased susceptibility to infections. G6PD activity was absent in patient's red cells and was about 2% of normal in leukocytes. Molecular studies using standard methods (WHO, 1967) showed G6PD in the patient to have a slightly fast electrophoretic mobility at pH 8.0 with otherwise normal properties (heat stability at 46 degrees C, apparent affinity for substrates, optimum pH, and utilization of substrate analogues). Other tests showed the patient's granulocytes to engulf latex particles normally, but to have impaired reduction of nitroblue tetrazolium and ferricytochrome-c as well as reduced iodination. Chemotaxis and random migration of the patient's granulocytes were normal as were myeloperoxidase, leukocyte alkaline phosphatase (LAP), and ultrastructural features. The molecular characteristics of G6PD in the patient differed from those of all previously reported variants associated with CNSHA, so the present variant was provisionally called G6PD Barcelona to distinguish it from other G6PD variants previously described. Possible mechanisms for the severe deficiency of G6PD in erythrocytes and granulocytes was investigated by studies on the immunologic specific activity of the mutant enzyme.


1989 ◽  
Vol 81 (2) ◽  
pp. 161-164 ◽  
Author(s):  
Joan Lluis Vives-Corrons ◽  
M. Assumpci� Pujades ◽  
Josep Petit ◽  
Dolors Colomer ◽  
Montserrat Corbella ◽  
...  

1988 ◽  
Vol 79 (1) ◽  
pp. 90-91
Author(s):  
Kelley Hall ◽  
Marshall T. Schreeder ◽  
Josef T. Prchal

Sign in / Sign up

Export Citation Format

Share Document