The diagnostic value of next generation sequencing in familial nonsyndromic congenital heart defects

2015 ◽  
Vol 167 (8) ◽  
pp. 1822-1829 ◽  
Author(s):  
Yaojuan Jia ◽  
Jacoba J. Louw ◽  
Jeroen Breckpot ◽  
Bert Callewaert ◽  
Catherine Barrea ◽  
...  
2014 ◽  
Vol 25 (4) ◽  
pp. 705-711 ◽  
Author(s):  
Neslihan Abaci ◽  
Muzaffer Arıkan ◽  
Türkan Tansel ◽  
Nazlı Sahin ◽  
Aris Cakiris ◽  
...  

AbstractIt has been shown that mitochondrial deoxyribo nucleic acid mutations may play an important role in the development of cardiomyopathy, and various types of cardiomyopathy can be attributed to disturbed mitochondrial oxidative energy metabolism. Several studies have described many mutations in mitochondrial genes encoding for subunits of respiratory chain complexes. Thus, recent studies confirm that pathologic mitochondrial deoxyribo nucleic acid mutations are a major reason of diseases and determining them by next-generation sequencing will improve our understanding of dysregulation of heart development. To analyse mitochondrial deoxyribo nucleic acid mutations, the entire mitochondrial deoxyribo nucleic acid was amplified in two overlapping polymerase chain reaction fragments from the cardiac tissue of the 22 patients with congenital heart disease, undergoing cardiac surgery. Mitochondrial deoxyribo nucleic acid was deep sequenced by next-generation sequencing. A total of 13 novel mitochondrial deoxyribo nucleic acid mutations were identified in nine patients. Of the patients, three have novel mutations together with reported cardiomyopathy mutations. In all, 65 mutations were found, and 13 of them were unreported. This study represents the most comprehensive mitochondrial deoxyribo nucleic acid mutational analysis in patients with congenital heart disease.


2018 ◽  
Vol 103 (3) ◽  
pp. 428-435 ◽  
Author(s):  
Junting Huang ◽  
Jiewen Fu ◽  
Shangyi Fu ◽  
Lisha Yang ◽  
Kailai Nie ◽  
...  

Background/AimGyrate atrophy of the choroid and retina (GACR) is an extremely rare autosomal recessive inherited disorder characterised by progressive vision loss. To identify the disease-causing gene in a consanguineous Chinese pedigree with GACR, we aimed to accurately diagnose patients with GACR through a combination of next-generation sequencing (NGS) genetic diagnosis, clinical imaging and amino acid metabolic analysis.MethodsA consanguineous Chinese pedigree with GACR, including two patients, was recruited and a comprehensive ophthalmological evaluation was performed. DNA was extracted from a proband and her family members, and the sample from the proband was analysed using targeted NGS. Variants ‎detected by NGS were confirmed by Sanger sequencing and subjected to segregation analysis. Tandem mass spectrometry (MS/MS) was subsequently performed for metabolic assessment.ResultsWe identified a ‎novel, deleterious, homologous ornithine aminotransferase (OAT) variant, c.G248A: p.S83N, which contributes to ‎the progression of GACR in patients. Our results showed that the p.S83N autosomal recessive ‎variant of OAT is most likely ‎pathogenic, with changes in protein stability drastically decreasing functionality. MS/MS verified that ornithine levels in patients were significantly elevated.ConclusionsRecruitment of a third-degree first cousin consanguineous marriage family with GACR allowed us to identify a novel pathogenicOATvariant in the Chinese population, broadening the mutation spectrum. Our findings reported the diagnostic value of a combination of NGS, retinal imaging and metabolic analysis of consanguineous marriage pedigrees in low-income/middle-income and low-incidence countries, including China, and may help to guide accurate diagnosis and ‎treatment of this disease.


2018 ◽  
Vol 39 (8) ◽  
pp. 1676-1680 ◽  
Author(s):  
Khalid M. Alharbi ◽  
Abdelhadi H. Al-Mazroea ◽  
Atiyeh M. Abdallah ◽  
Yousef Almohammadi ◽  
S. Justin Carlus ◽  
...  

2018 ◽  
Vol 2 (s1) ◽  
pp. 1-4
Author(s):  
Stefano Paolacci ◽  
Yeltay Rakhmanov ◽  
Paolo Enrico Maltese ◽  
Matteo Bertelli

Abstract Cardiovascular disorders include various conditions characterized by morphological and functional defects of the heart and vascular system. Molecular biology techniques (in particular DNA sequencing) have recently offered new insights into the etiology of cardiovascular defects, revealing their association with germline as well as somatic mutations. Genetic tests are evaluated on the basis of their analytical and clinical validity, clinical utility, and ethical, legal and social implications. Next generation sequencing is so far the best approach for molecular diagnosis of congenital heart defects and vascular anomalies, the genetic and phenotypic heterogeneity of which makes them difficult to diagnose. Understanding the molecular causes of congenital heart defects and vascular anomalies has permitted clinical trials of drugs targeting affected genes and pathways. The articles in this Special Issue aim to provide guidance for those concerned with diagnosis and research in the field of cardiovascular defects. The approach to genetic testing is discussed.


Sign in / Sign up

Export Citation Format

Share Document