Diagnostic value of a combination of next-generation sequencing, chorioretinal imaging and metabolic analysis: lessons from a consanguineous Chinese family with gyrate atrophy of the choroid and retina stemming from a novel OAT variant

2018 ◽  
Vol 103 (3) ◽  
pp. 428-435 ◽  
Author(s):  
Junting Huang ◽  
Jiewen Fu ◽  
Shangyi Fu ◽  
Lisha Yang ◽  
Kailai Nie ◽  
...  

Background/AimGyrate atrophy of the choroid and retina (GACR) is an extremely rare autosomal recessive inherited disorder characterised by progressive vision loss. To identify the disease-causing gene in a consanguineous Chinese pedigree with GACR, we aimed to accurately diagnose patients with GACR through a combination of next-generation sequencing (NGS) genetic diagnosis, clinical imaging and amino acid metabolic analysis.MethodsA consanguineous Chinese pedigree with GACR, including two patients, was recruited and a comprehensive ophthalmological evaluation was performed. DNA was extracted from a proband and her family members, and the sample from the proband was analysed using targeted NGS. Variants ‎detected by NGS were confirmed by Sanger sequencing and subjected to segregation analysis. Tandem mass spectrometry (MS/MS) was subsequently performed for metabolic assessment.ResultsWe identified a ‎novel, deleterious, homologous ornithine aminotransferase (OAT) variant, c.G248A: p.S83N, which contributes to ‎the progression of GACR in patients. Our results showed that the p.S83N autosomal recessive ‎variant of OAT is most likely ‎pathogenic, with changes in protein stability drastically decreasing functionality. MS/MS verified that ornithine levels in patients were significantly elevated.ConclusionsRecruitment of a third-degree first cousin consanguineous marriage family with GACR allowed us to identify a novel pathogenicOATvariant in the Chinese population, broadening the mutation spectrum. Our findings reported the diagnostic value of a combination of NGS, retinal imaging and metabolic analysis of consanguineous marriage pedigrees in low-income/middle-income and low-incidence countries, including China, and may help to guide accurate diagnosis and ‎treatment of this disease.

HLA ◽  
2018 ◽  
Vol 92 (5) ◽  
pp. 320-321 ◽  
Author(s):  
Dan Peng ◽  
Haixia Li ◽  
Zhiyuan Wang ◽  
Riga Wu ◽  
Hongyu Sun

2020 ◽  
Author(s):  
Huaiyu Gu ◽  
Zhen Zhang ◽  
Yi-shuang Xiao ◽  
Ru Shen ◽  
Hong-chao Jiang ◽  
...  

Abstract Background: Retinoblastoma is a rare intraocular malignancy and typically initiated by inactivating biallelic mutations of RB1 gene. Each year, ~8,000 children worldwide are diagnosed for retinoblastoma. In high-income countries, patient survival is over 95% while low-income countries is ~30%.If disease is diagnosed early and treated in centers specializing in retinoblastoma, the survival might exceed 95% and many eyes could be safely treated and support a lifetime of good vision. In China, approximate 1,100 newly diagnosed cases are expected annually and 28 hospitals covering 25 provinces established centers classified by expertise and resources for better treatment options and follow-up. Comparing with other province of eastern China, Yunnan province is remote geographically. This might result that healthcare staff have low awareness of the role of genetic testing in management and screening in families.Methods: The patients with retinoblastoma were selected in Yunnan. DNA from blood was used for targeted gene sequencing. Then, an in-house bioinformatics pipeline was done to detect both single nucleotide variants and small insertions/deletions. The pathogenic mutations were identified and further confirmed by conventional methods and cosegregation in families.Results: Using our approach, targeted next generation sequencing was used to detect the mutation of these 12 probands. Bioinformatic predictions showed that nine mutations were found in our study and four were novel pathogenic variants in these nine mutations.Conclusions: It’s the first report to describe RB1 mutations in Yunnan children with retinoblastoma. This study would improve role of genetic testing for management and family screening.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Liang Xia ◽  
Yangjia Cao ◽  
Yang Guo ◽  
Guangyi Ba ◽  
Qiong Luo ◽  
...  

Mutations in the COL4A3 gene are frequently reported to be associated with various types of hereditary nephropathy. COL4A3 encodes the α3 chain of type IV collagen, which is the main structural protein in the basement membrane. Mutations in this gene are always related to kidney performance, and deafness and ocular lesion have also been reported. In this study, using next-generation sequencing, we investigated the DNA of a family visiting a clinic for hearing loss. A new missense mutation was found in COL4A3 of 5 patients, c.3227C>T (p.P1076L). Based on these results, we predict that the mutation is pathogenic and leads to abnormal collagen IV. Here, we report for the first time on this autosomal dominant syndrome, characterized by hearing loss and eye abnormalities, but without renal damage, in all carriers. Since the oldest patient in the trial was less than 50 years old, however, we recommend that renal examination be reviewed regularly. Our results reveal expansion in the mutation spectrum of the COL4A3 gene and phenotypic spectrum of collagen IV disease. Our study suggests that next-generation sequencing is an economical and effective method and may help in the accurate diagnosis and treatment of these patients.


Sign in / Sign up

Export Citation Format

Share Document