How to use spinal cord magnetic resonance imaging in the McDonald diagnostic criteria for multiple sclerosis

2005 ◽  
Vol 57 (4) ◽  
pp. 606-607 ◽  
Author(s):  
Tijmen Korteweg ◽  
Frederik Barkhof ◽  
Bernard M. J. Uitdehaag ◽  
Chris H. Polman
1992 ◽  
Vol 32 (5) ◽  
pp. 643-650 ◽  
Author(s):  
S. Wiebe ◽  
D. H. Lee ◽  
S. J. Karlik ◽  
M. Hopkins ◽  
M. K. Vandervoort ◽  
...  

2013 ◽  
Vol 20 (1) ◽  
pp. 72-80 ◽  
Author(s):  
H Kearney ◽  
MA Rocca ◽  
P Valsasina ◽  
L Balk ◽  
J Sastre-Garriga ◽  
...  

Background: Understanding long-term disability in multiple sclerosis (MS) is a key goal of research; it is relevant to how we monitor and treat the disease. Objectives: The Magnetic Imaging in MS (MAGNIMS) collaborative group sought to determine the relationship of brain lesion load, and brain and spinal cord atrophy, with physical disability in patients with long-established MS. Methods: Patients had a magnetic resonance imaging (MRI) scan of their brain and spinal cord, from which we determined brain grey (GMF) and white matter (WMF) fractional volumes, upper cervical spinal cord cross-sectional area (UCCA) and brain T2-lesion volume (T2LV). We assessed patient disability using the Expanded Disability Status Scale (EDSS). We analysed associations between EDSS and MRI measures, using two regression models (dividing cohort by EDSS into two and four sub-groups). Results: In the binary model, UCCA ( p < 0.01) and T2LV ( p = 0.02) were independently associated with the requirement of a walking aid. In the four-category model UCCA ( p < 0.01), T2LV ( p = 0.02) and GMF ( p = 0.04) were independently associated with disability. Conclusions: Long-term physical disability was independently linked with atrophy of the spinal cord and brain T2 lesion load, and less consistently, with brain grey matter atrophy. Combinations of spinal cord and brain MRI measures may be required to capture clinically-relevant information in people with MS of long disease duration.


2019 ◽  
Vol 5 (1) ◽  
pp. 205521731983666 ◽  
Author(s):  
Naila Makhani ◽  
Christine Lebrun ◽  
Aksel Siva ◽  
Sona Narula ◽  
Evangeline Wassmer ◽  
...  

Background Steps towards the development of diagnostic criteria are needed for children with the radiologically isolated syndrome to identify children at risk of clinical demyelination. Objectives To evaluate the 2005 and 2016 MAGNIMS magnetic resonance imaging criteria for dissemination in space for multiple sclerosis, both alone and with oligoclonal bands in cerebrospinal fluid added, as predictors of a first clinical event consistent with central nervous system demyelination in children with radiologically isolated syndrome. Methods We analysed an international historical cohort of 61 children with radiologically isolated syndrome (≤18 years), defined using the 2010 magnetic resonance imaging dissemination in space criteria (Ped-RIS) who were followed longitudinally (mean 4.2 ± 4.7 years). All index scans also met the 2017 magnetic resonance imaging dissemination in space criteria. Results Diagnostic indices (95% confidence intervals) for the 2005 dissemination in space criteria, with and without oligoclonal bands, were: sensitivity 66.7% (38.4–88.2%) versus 72.7% (49.8–89.3%); specificity 83.3% (58.6–96.4%) versus 53.9% (37.2–69.9%). For the 2016 MAGNIMS dissemination in space criteria diagnostic indices were: sensitivity 76.5% (50.1–93.2%) versus 100% (84.6–100%); specificity 72.7% (49.8–89.3%) versus 25.6% (13.0–42.1%). Conclusions Oligoclonal bands increased the specificity of magnetic resonance imaging criteria in children with Ped-RIS. Clinicians should consider testing cerebrospinal fluid to improve diagnostic certainty. There is rationale to include cerebrospinal fluid analysis for biomarkers including oligoclonal bands in planned prospective studies to develop optimal diagnostic criteria for radiologically isolated syndrome in children.


2021 ◽  
pp. 55-56
Author(s):  
Jonathan L. Carter

A 36-year-old woman with a history of relapsing-remitting multiple sclerosis was evaluated for new multiple sclerosis symptoms accompanied by new, enhancing, white matter lesions on brain magnetic resonance imaging. Her multiple sclerosis presented with L’hermitte sign when she was 24 years old. She had onset of bilateral lower extremity and left upper extremity tingling at age 26 years. Magnetic resonance imaging and cerebrospinal fluid examination at the time were supportive of the diagnosis of multiple sclerosis, and disease-modifying therapy was recommended by her neurologist. She initiated therapy with dimethyl fumarate at age 30 years after several further relapses. Surveillance magnetic resonance imaging showed new gadolinium-enhancing lesions on brain magnetic resonance imaging on each of 3 consecutive yearly scans. Urine culture and sensitivity tests were performed to rule out occult urinary tract infection; results of this testing were negative. magnetic resonance imaging of the brain concurrently showed new enhancing white matter lesions. The patient was diagnosed with clinical and radiographic breakthrough disease activity while receiving therapy for multiple sclerosis. The patient was treated with 5 days of intravenous methylprednisolone for her relapse. After discussion with the patient, it was decided to transition therapy from dimethyl fumarate to ocrelizumab infusions for her breakthrough disease activity. This decision was further supported by the patient’s concerns that she might be entering an early progressive phase of the disease. In patients with spinal-predominant multiple sclerosis, or with symptoms potentially indicating new spinal cord involvement, it may be necessary to include spinal cord imaging to assess for new disease activity.


2015 ◽  
Vol 22 (3) ◽  
pp. 320-328 ◽  
Author(s):  
Adrienne N Dula ◽  
Siddharama Pawate ◽  
Richard D Dortch ◽  
Robert L Barry ◽  
Kristen M George-Durrett ◽  
...  

Background: The clinical course of multiple sclerosis (MS) is mainly attributable to cervical and upper thoracic spinal cord dysfunction. High-resolution, 7T anatomical imaging of the cervical spinal cord is presented. Image contrast between gray/white matter and lesions surpasses conventional, clinical T1- and T2-weighted sequences at lower field strengths. Objective: To study the spinal cord of healthy controls and patients with MS using magnetic resonance imaging at 7T. Methods: Axial (C2–C5) T1- and T2*-weighted and sagittal T2*-/spin-density-weighted images were acquired at 7T in 13 healthy volunteers (age 22–40 years), and 15 clinically diagnosed MS patients (age 19–53 years, Extended Disability Status Scale, (EDSS) 0–3) in addition to clinical 3T scans. In healthy volunteers, a high-resolution multi-echo gradient echo scan was obtained over the same geometry at 3T. Evaluation included signal and contrast to noise ratios and lesion counts for healthy and patient volunteers, respectively. Results/conclusion: High-resolution images at 7T exceeded resolutions reported at lower field strengths. Gray and white matter were sharply demarcated and MS lesions were more readily visualized at 7T compared to clinical acquisitions, with lesions apparent at both fields. Nerve roots were clearly visualized. White matter lesion counts averaged 4.7 vs 3.1 (52% increase) per patient at 7T vs 3T, respectively ( p=0.05).


2003 ◽  
Vol 250 (3) ◽  
pp. 307-315 ◽  
Author(s):  
Lalitha Vaithianathar ◽  
Chris R. Tench ◽  
Paul S. Morgan ◽  
Cris S. Constantinescu

Sign in / Sign up

Export Citation Format

Share Document