scholarly journals Reaching the Maximum Multiplicity of the Covalent Chemical Bond

2007 ◽  
Vol 119 (9) ◽  
pp. 1491-1494 ◽  
Author(s):  
Björn O. Roos ◽  
Antonio C. Borin ◽  
Laura Gagliardi
2007 ◽  
Vol 46 (9) ◽  
pp. 1469-1472 ◽  
Author(s):  
Björn O. Roos ◽  
Antonio C. Borin ◽  
Laura Gagliardi

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel S. Levine ◽  
Martin Head-Gordon

Abstract Lowering of the electron kinetic energy (KE) upon initial encounter of radical fragments has long been cited as the primary origin of the covalent chemical bond based on Ruedenberg’s pioneering analysis of H$${}_{2}^{+}$$ 2 + and H2 and presumed generalization to other bonds. This work reports KE changes during the initial encounter corresponding to bond formation for a range of different bonds; the results demand a re-evaluation of the role of the KE. Bonds between heavier elements, such as H3C–CH3, F–F, H3C–OH, H3C–SiH3, and F–SiF3 behave in the opposite way to H$${}_{2}^{+}$$ 2 + and H2, with KE often increasing on bringing radical fragments together (though the total energy change is substantially stabilizing). The origin of this difference is Pauli repulsion between the electrons forming the bond and core electrons. These results highlight the fundamental role of constructive quantum interference (or resonance) as the origin of chemical bonding. Differences between the interfering states distinguish one type of bond from another.


1989 ◽  
Vol 86 ◽  
pp. 853-859 ◽  
Author(s):  
Federico Moscardó ◽  
José Pérez-Jordá ◽  
Emilio San-Fabián

2020 ◽  
Author(s):  
Gabriel Freire Sanzovo Fernandes ◽  
Leonardo dos Anjos Cunha ◽  
Francisco Bolivar Correto Machado ◽  
Luiz Ferrão

<p>Chemical bond plays a central role in the description of the physicochemical properties of molecules and solids and it is essential to several fields in science and engineering, governing the material’s mechanical, electrical, catalytic and optoelectronic properties, among others. Due to this indisputable importance, a proper description of chemical bond is needed, commonly obtained through solving the Schrödinger equation of the system with either molecular orbital theory (molecules) or band theory (solids). However, connecting these seemingly different concepts is not a straightforward task for students and there is a gap in the available textbooks concerning this subject. This work presents a chemical content to be added in the physical chemistry undergraduate courses, in which the framework of molecular orbitals was used to qualitatively explain the standard state of the chemical elements and some properties of the resulting material, such as gas or crystalline solids. Here in Part 1, we were able to show the transition from Van der Waals clusters to metal in alkali and alkaline earth systems. In Part 2 and 3 of this three-part work, the present framework is applied to main group elements and transition metals. The original content discussed here can be adapted and incorporated in undergraduate and graduate physical chemistry and/or materials science textbooks and also serves as a conceptual guide to subsequent disciplines such as quantum chemistry, quantum mechanics and solid-state physics.</p>


2008 ◽  
Vol 870 (1-3) ◽  
pp. 1-9 ◽  
Author(s):  
Olga V. Sizova ◽  
Leonid V. Skripnikov ◽  
Alexander Yu. Sokolov

1998 ◽  
Vol 72 (24) ◽  
pp. 3169-3171 ◽  
Author(s):  
K. Prabhakaran ◽  
T. Matsumoto ◽  
T. Ogino ◽  
Y. Masumoto

Sign in / Sign up

Export Citation Format

Share Document