Hysteretic Control of Near‐infrared Transparency Using a Liquescent Radical Cation

2021 ◽  
Author(s):  
Shuichi Suzuki ◽  
Daiki Yamaguchi ◽  
Yoshiaki Uchida ◽  
Takeshi Naota
Author(s):  
Shuichi Suzuki ◽  
Daiki Yamaguchi ◽  
Yoshiaki Uchida ◽  
Takeshi Naota

2021 ◽  
pp. 109929
Author(s):  
Masafumi Yano ◽  
Yoshinori Inada ◽  
Yuki Hayashi ◽  
Misaki Nakai ◽  
Koichi Mitsudo ◽  
...  

2018 ◽  
Vol 122 (41) ◽  
pp. 23364-23370 ◽  
Author(s):  
Joseph A. Christensen ◽  
Jinyuan Zhang ◽  
Jiawang Zhou ◽  
Jordan N. Nelson ◽  
Michael R. Wasielewski

2020 ◽  
Vol 5 (2) ◽  
pp. 674-681
Author(s):  
Iryna G. Davydenko ◽  
Yurii L. Slominskiy ◽  
Nataliya V. Obernikhina ◽  
Aleksey D. Kachkovsky ◽  
Aleksey I. Tolmachev

1999 ◽  
Vol 103 (50) ◽  
pp. 11172-11180 ◽  
Author(s):  
Robert D. Williams ◽  
Joseph T. Hupp ◽  
Michael T. Ramm ◽  
Stephen F. Nelsen

2020 ◽  
Vol 49 (6) ◽  
pp. 685-688
Author(s):  
Masafumi Yano ◽  
Yoshinori Inada ◽  
Yuki Hayashi ◽  
Tatsuo Yajima ◽  
Koichi Mitsudo ◽  
...  

2021 ◽  
Author(s):  
Peng-Hao Wang ◽  
Cao-Ming Yu ◽  
Xiao-Qing Yu ◽  
Ming-Sheng Wang ◽  
Guo-Cong Guo

A new design strategy through synergy of Mo (VI)–Mo (V) intervalence charge transfer and π(radical)–π(radical/cation) interactions is proposed to obtain semiconductors with photoresponsive ranges covering the whole UV–SWIR (ultraviolet–shortwave near-infrared;...


Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7875-7887 ◽  
Author(s):  
Ying Lan ◽  
Xiaohui Zhu ◽  
Ming Tang ◽  
Yihan Wu ◽  
Jing Zhang ◽  
...  

A near-infrared (NIR) activated theranostic nanoplatform based on upconversion nanoparticles (UCNPs) is developed in order to overcome the hypoxia-associated resistance in photodynamic therapy by photo-release of NO upon NIR illumination.


2020 ◽  
Vol 56 (43) ◽  
pp. 5819-5822
Author(s):  
Jing Zheng ◽  
Yongzhuo Liu ◽  
Fengling Song ◽  
Long Jiao ◽  
Yingnan Wu ◽  
...  

In this study, a near-infrared (NIR) theranostic photosensitizer was developed based on a heptamethine aminocyanine dye with a long-lived triplet state.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


Sign in / Sign up

Export Citation Format

Share Document