Fluorescent proteins for in vivo imaging, where's the biliverdin?

2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.

2016 ◽  
Vol 52 (22) ◽  
pp. 4132-4135 ◽  
Author(s):  
Eun Sook Lee ◽  
V. G. Deepagan ◽  
Dong Gil You ◽  
Jueun Jeon ◽  
Gi-Ra Yi ◽  
...  

Hybrid nanoparticles allow for imaging hydrogen peroxide via chemiluminescence resonance energy transfer in the near-infrared wavelength range.


2020 ◽  
Author(s):  
Fabian C. Herbert ◽  
Olivia Brohlin ◽  
Tyler Galbraith ◽  
Candace Benjamin ◽  
Cesar A. Reyes ◽  
...  

<div> <div> <div> <p>Icosahedral virus-like particles (VLPs) derived from bacteriophages Qβ and PP7 encapsulating small-ultra red fluorescent protein (smURFP) were produced using a versatile supramolecualr capsid dissassemble-reassemble approach. The generated fluorescent VLPs display identical structural properties to their non-fluorescent analogs. Encapsulated smURFP shows indistinguishable photochemical properties to its unencapsulated counterpart, exhibits outstanding stability towards pH, and produces bright in vitro images following phagocytosis by macrophages. In vivo imaging allows biodistribution to be imaged at different time points. Ex vivo imaging of intravenously administered encapsulated smURFP reveleas localization in the liver and </p> </div> </div> <div> <div> <p>kidneys after 2 h blood circulation and substantial elimination constructs as non-invasive in vivo imaging agents. </p> </div> </div> </div>


2021 ◽  
Author(s):  
Kiryl Piatkevich ◽  
Hanbin Zhang ◽  
Stavrini Papadaki ◽  
Xiaoting Sun ◽  
Luxia Yao ◽  
...  

Abstract Recent progress in fluorescent protein development has generated a large diversity of near-infrared fluorescent proteins, which are rapidly becoming popular probes for a variety of imaging applications. To assist end-users with a selection of the right near-infrared fluorescent protein for a given application, we will conduct a quantitative assessment of intracellular brightness, photostability, and oligomeric state of 19 near-infrared fluorescent proteins in cultured mammalian cells. The top-performing proteins will be further validated for in vivo imaging of neurons in C. elegans, zebrafish, and mice. We will also assess the applicability of the selected NIR FPs for expansion microscopy and two-photon imaging.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1670-C1670
Author(s):  
Sergei Pletnev ◽  
Daria Shcherbakova ◽  
Oksana Subach ◽  
Vladimir Malashkevich ◽  
Steven Almo ◽  
...  

Fluorescent proteins (FPs) have become valuable tools for molecular biology, biochemistry, medicine, and cancer research. Starting from parent green fluorescent protein (GFP), most challenging task of the FPs studies was the development of FPs with longer excitation/emission wavelength. This pursuit was motivated by advantages of so-called red-shifted FPs, namely, lower background of cellular autofluorescence in microscopy, lower light scattering and reduced tissue absorbance of longer wavelengths for in vivo imaging. In addition to FPs with regular spectral properties, there are proteins of other types available, including FPs with a large Stokes shift and photoconvertible FPs. These special kinds of FPs have become useful in super-resolution microscopy, imaging of enzyme activities, protein-protein interactions, photolabeling, and in vivo imaging. According to their emission wavelength, red-shifted FPs could be divided in the following groups: 520-540 nm yellow FPs (YFPs), 540-570 nm orange FPs (OFPs), 570-620 nm red FPs (RFPs), and > 620 nm far-RFPs. Red shift of the excitation/emission bands of these FPs is predominantly achieved by extension of the conjugated system of the chromophore and its protonation/deprotonation. The variety of spectral properties of FPs (excitation and emission wavelength, quantum yield, brightness, photo- and pH- stability, photoconversion, large Stokes shift, etc) results from the different chromophore structures and its interactions with surrounding amino acid residues. In this work we focus on structural studies and molecular mechanisms of FPs with orange emission.


2001 ◽  
Vol 183 (12) ◽  
pp. 3791-3794 ◽  
Author(s):  
Fernando Rodrigues ◽  
Martijn van Hemert ◽  
H. Yde Steensma ◽  
Manuela Côrte-Real ◽  
Cecı́la Leão

ABSTRACT We describe the utilization of a red fluorescent protein (DsRed) as an in vivo marker for Saccharomyces cerevisiae. Clones expressing red and/or green fluorescent proteins with both cytoplasmic and nuclear localization were obtained. A series of vectors are now available which can be used to create amino-terminal (N-terminal) and carboxyl-terminal (C-terminal) fusions with the DsRed protein.


2011 ◽  
Vol 29 (8) ◽  
pp. 757-761 ◽  
Author(s):  
Grigory S Filonov ◽  
Kiryl D Piatkevich ◽  
Li-Min Ting ◽  
Jinghang Zhang ◽  
Kami Kim ◽  
...  

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Arie Krumholz ◽  
Daria M. Shcherbakova ◽  
Jun Xia ◽  
Lihong V. Wang ◽  
Vladislav V. Verkhusha

2021 ◽  
Author(s):  
Yunchao Zhang ◽  
Feifei Wang ◽  
Qing Tao ◽  
Nana Wang ◽  
Xingrui Gi ◽  
...  

Abstract Objectives The understanding of the engrafted cell behaviors is the prerequisite to optimize cell therapy, and a multimodal imaging at both anatomical and molecular levels is designed to achieve this goal. Results We constructed a lentiviral vector carrying ferritin heavy chain 1 (FTH1), near-infrared fluorescent protein (iRFP) and enhanced green fluorescent protein (EGFP) via T2A linker, and established the induced pluripotent stem cells (iPSCs) culture stably expressing these three reporter genes. These iPSCs showed green and near-infrared fluorescence as well as the iron uptake capacity in vitro. After transplanted the labeled iPSCs into the rat brain, the engrafted cells could be in vivo imaged using magnetic resonance imaging (MRI) and near-infrared fluorescent imaging (NIF) up to 60 days at the anatomical level, moreover, these cells could be detected using EGFP immunostaining and Prussian blue stain at the cellular level. Conclusions Our study provides a novel tool to study the cellular behaviors of the transplanted cells in a multimodal way, which will be valuable for the effectiveness and safety evaluation of cell therapy.


2021 ◽  
Author(s):  
yunchao Zhang ◽  
Jingwen Wang ◽  
Yue Wu ◽  
Qing Tao ◽  
Feifei Wang ◽  
...  

Abstract BackgroundThe understanding of the engrafted cell behaviors such as the survival, growth and distribution is the prerequisite to optimize cell therapy, and a multimodal imaging at both anatomical and molecular levels is designed to achieve this goal. Methods and results We constructed a lentiviral vector carrying ferritin heavy chain 1 (FTH1), near-infrared fluorescent protein (iRFP) and enhanced green fluorescent protein (EGFP) via T2A linker, and established the induced pluripotent stem cells (iPSCs) culture stably expressing these three reporter genes. These iPSCs showed green and near-infrared fluorescence as well as the iron uptake capacity in vitro. After transplanted the labeled iPSCs into the rat brain, the engrafted cells could be in vivo imaged using magnetic resonance imaging (MRI) and near-infrared fluorescent imaging (NIF) up to 60 days at the anatomical level, moreover, these cells could be detected using EGFP immunostaining and Prussian blue stain at the cellular level. Conclusions Our study provides a novel tool to study the cellular behaviors of the transplanted cells in a multimodal way, which will be valuable for the effectiveness and safety evaluation of cell therapy.


2013 ◽  
Vol 10 (8) ◽  
pp. 751-754 ◽  
Author(s):  
Daria M Shcherbakova ◽  
Vladislav V Verkhusha

Sign in / Sign up

Export Citation Format

Share Document