A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage

2017 ◽  
Vol 56 (47) ◽  
pp. 14953-14957 ◽  
Author(s):  
Congxin Xie ◽  
Yinqi Duan ◽  
Wenbin Xu ◽  
Huamin Zhang ◽  
Xianfeng Li
2017 ◽  
Vol 129 (47) ◽  
pp. 15149-15153 ◽  
Author(s):  
Congxin Xie ◽  
Yinqi Duan ◽  
Wenbin Xu ◽  
Huamin Zhang ◽  
Xianfeng Li

2020 ◽  
Author(s):  
Jian Luo ◽  
Bo Hu ◽  
Wenda Wu ◽  
Maowei Hu ◽  
Leo Liu

Redox flow batteries (RFBs) have been recognized as a promising option for scalable and dispatchable renewable energy storage (e.g. solar and wind energy). Zinc metal represents a low cost, high capacity anode material to develop high energy density aqueous redox flow batteries. However, the energy storage applications of traditional inorganic Zn halide flow batteries are primarily plagued by the material challenges of traditional halide cathode electrolytes (e.g. bromine) including corrosion, toxicity, and severe crossover. As reported here, we have developed a bipolar Zinc-ferrocene salt compound, Zinc 1,1’-bis(3-sulfonatopropyl)ferrocene, Zn[Fc(SPr)2] (1.80 M solubility or 48.2 Ah/L charge storage capacity) – a robust, energy-dense, bipolar redox-active electrolyte material for high performance Zn organic RFBs. Using a low-cost porous Daramic membrane, the Zn[Fc(SPr)2] aqueous organic redox flow battery (AORFB) has worked in dual-flow and single-flow modes. It has manifested outstanding current, energy, and power performance, specifically, operating at high current densities of up to 200 mA/cm2 and delivering an energy efficiency of up to 81.5% and a power density of up to 270.5 mW/cm2. A Zn[Fc(SPr)2] AORFB demonstrated an energy density of 20.2 Wh/L and displayed 100% capacity retention for 2000 cycles (1284 hr or 53.5 days). The Zn[Fc(SPr)2] ionic bipolar electrolyte not only offers record-setting, highly-stable, energy-dense, and the most powerful Zn-organic AORFBs to date, but it also provides a new paradigm to develop even more advanced redox materials for scalable energy storage.


Author(s):  
Lin Qiao ◽  
Congxin Xie ◽  
Mingjun Nan ◽  
Huamin Zhang ◽  
Xiangkun Ma ◽  
...  

Manganese-based flow batteries have attracted increasing interest due to their advantage of low cost and high energy density. However, the sediment (MnO2) from Mn3+ disproportionation reaction creates the risk to...


2019 ◽  
Vol 12 (6) ◽  
pp. 1834-1839 ◽  
Author(s):  
Congxin Xie ◽  
Yun Liu ◽  
Wenjing Lu ◽  
Huamin Zhang ◽  
Xianfeng Li

A zinc–iodine single flow battery with super high energy density was designed and fabricated.


2011 ◽  
Vol 1 (3) ◽  
pp. 394-400 ◽  
Author(s):  
Liyu Li ◽  
Soowhan Kim ◽  
Wei Wang ◽  
M. Vijayakumar ◽  
Zimin Nie ◽  
...  

2019 ◽  
Vol 12 (05) ◽  
pp. 1930004 ◽  
Author(s):  
Xin Cao ◽  
Huan Xia ◽  
Xiangyu Zhao

Alkaline zinc-based rechargeable batteries (AZRBs) are competitive candidates for future electrical energy storage because of their low-cost, eco-friendliness and high energy density. However, plagued by dendrites, the AZRBs suffer from drastic decay in electrochemical properties and safety. This review elucidates fundamentals of zinc dendritic formation and summarizes the strategies, including electrode design and modification, electrolyte optimization and separator improvement, for suppressing zinc dendritic growth.


2015 ◽  
Vol 27 (39) ◽  
pp. 5915-5922 ◽  
Author(s):  
Xiaochuan Lu ◽  
Mark E. Bowden ◽  
Vincent L. Sprenkle ◽  
Jun Liu

Sign in / Sign up

Export Citation Format

Share Document