Toward dendrite-free alkaline zinc-based rechargeable batteries: A minireview

2019 ◽  
Vol 12 (05) ◽  
pp. 1930004 ◽  
Author(s):  
Xin Cao ◽  
Huan Xia ◽  
Xiangyu Zhao

Alkaline zinc-based rechargeable batteries (AZRBs) are competitive candidates for future electrical energy storage because of their low-cost, eco-friendliness and high energy density. However, plagued by dendrites, the AZRBs suffer from drastic decay in electrochemical properties and safety. This review elucidates fundamentals of zinc dendritic formation and summarizes the strategies, including electrode design and modification, electrolyte optimization and separator improvement, for suppressing zinc dendritic growth.

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jingdong Huang ◽  
Jing Zeng ◽  
Kunjie Zhu ◽  
Ruizhi Zhang ◽  
Jun Liu

AbstractThere is an urgent need for low-cost, high-energy-density, environmentally friendly energy storage devices to fulfill the rapidly increasing need for electrical energy storage. Multi-electron redox is considerably crucial for the development of high-energy-density cathodes. Here we present high-performance aqueous zinc–manganese batteries with reversible Mn2+/Mn4+ double redox. The active Mn4+ is generated in situ from the Mn2+-containing MnOx nanoparticles and electrolyte. Benefitting from the low crystallinity of the birnessite-type MnO2 as well as the electrolyte with Mn2+ additive, the MnOx cathode achieves an ultrahigh energy density with a peak of 845.1 Wh kg−1 and an ultralong lifespan of 1500 cycles. The combination of electrochemical measurements and material characterization reveals the reversible Mn2+/Mn4+ double redox (birnessite-type MnO2 ↔ monoclinic MnOOH and spinel ZnMn2O4 ↔ Mn2+ ions). The reversible Mn2+/Mn4+ double redox electrode reaction mechanism offers new opportunities for the design of low-cost, high-energy-density cathodes for advanced rechargeable aqueous batteries.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5742
Author(s):  
Vignaswaran Veerapandiyan ◽  
Federica Benes ◽  
Theresa Gindel ◽  
Marco Deluca

Electrical energy storage systems (EESSs) with high energy density and power density are essential for the effective miniaturization of future electronic devices. Among different EESSs available in the market, dielectric capacitors relying on swift electronic and ionic polarization-based mechanisms to store and deliver energy already demonstrate high power densities. However, different intrinsic and extrinsic contributions to energy dissipations prevent ceramic-based dielectric capacitors from reaching high recoverable energy density levels. Interestingly, relaxor ferroelectric-based dielectric capacitors, because of their low remnant polarization, show relatively high energy density and thus display great potential for applications requiring high energy density properties. In this study, some of the main strategies to improve the energy density properties of perovskite lead-free relaxor systems are reviewed, including (i) chemical modification at different crystallographic sites, (ii) chemical additives that do not target lattice sites, and (iii) novel processing approaches dedicated to bulk ceramics, thick and thin films, respectively. Recent advancements are summarized concerning the search for relaxor materials with superior energy density properties and the appropriate choice of both composition and processing routes to match various applications’ needs. Finally, future trends in computationally-aided materials design are presented.


2020 ◽  
Author(s):  
Jian Luo ◽  
Bo Hu ◽  
Wenda Wu ◽  
Maowei Hu ◽  
Leo Liu

Redox flow batteries (RFBs) have been recognized as a promising option for scalable and dispatchable renewable energy storage (e.g. solar and wind energy). Zinc metal represents a low cost, high capacity anode material to develop high energy density aqueous redox flow batteries. However, the energy storage applications of traditional inorganic Zn halide flow batteries are primarily plagued by the material challenges of traditional halide cathode electrolytes (e.g. bromine) including corrosion, toxicity, and severe crossover. As reported here, we have developed a bipolar Zinc-ferrocene salt compound, Zinc 1,1’-bis(3-sulfonatopropyl)ferrocene, Zn[Fc(SPr)2] (1.80 M solubility or 48.2 Ah/L charge storage capacity) – a robust, energy-dense, bipolar redox-active electrolyte material for high performance Zn organic RFBs. Using a low-cost porous Daramic membrane, the Zn[Fc(SPr)2] aqueous organic redox flow battery (AORFB) has worked in dual-flow and single-flow modes. It has manifested outstanding current, energy, and power performance, specifically, operating at high current densities of up to 200 mA/cm2 and delivering an energy efficiency of up to 81.5% and a power density of up to 270.5 mW/cm2. A Zn[Fc(SPr)2] AORFB demonstrated an energy density of 20.2 Wh/L and displayed 100% capacity retention for 2000 cycles (1284 hr or 53.5 days). The Zn[Fc(SPr)2] ionic bipolar electrolyte not only offers record-setting, highly-stable, energy-dense, and the most powerful Zn-organic AORFBs to date, but it also provides a new paradigm to develop even more advanced redox materials for scalable energy storage.


2017 ◽  
Vol 129 (47) ◽  
pp. 15149-15153 ◽  
Author(s):  
Congxin Xie ◽  
Yinqi Duan ◽  
Wenbin Xu ◽  
Huamin Zhang ◽  
Xianfeng Li

2015 ◽  
Vol 27 (39) ◽  
pp. 5915-5922 ◽  
Author(s):  
Xiaochuan Lu ◽  
Mark E. Bowden ◽  
Vincent L. Sprenkle ◽  
Jun Liu

Author(s):  
Lin Qiao ◽  
Congxin Xie ◽  
Mingjun Nan ◽  
Huamin Zhang ◽  
Xiangkun Ma ◽  
...  

Manganese-based flow batteries have attracted increasing interest due to their advantage of low cost and high energy density. However, the sediment (MnO2) from Mn3+ disproportionation reaction creates the risk to...


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1091
Author(s):  
Elpida Piperopoulos ◽  
Marianna Fazio ◽  
Emanuela Mastronardo ◽  
Maurizio Lanza ◽  
Candida Milone

Thermochemical materials (TCM) are among the most promising systems to store high energy density for long-term energy storage. To be eligible as candidates, the materials have to fit many criteria such as complete reversibility of the reaction and cycling stability, high availability of the material at low cost, environmentally friendliness, and non-toxicity. Among the most promising TCM, the Mg(OH)2/MgO system appears worthy of attention for its properties in line with those required. In the last few decades, research focused its attention on the optimization of attractive hydroxide performance to achieve a better thermochemical response, however, often negatively affecting its energy density per unit of volume and therefore compromising its applicability on an industrial scale. In this study, pure Mg(OH)2 was developed using different synthesis procedures. Reverse deposition precipitation and deposition precipitation methods were used to obtain the investigated samples. By adding a cationic surfactant (cetyl trimethylammonium bromide), deposition precipitation Mg(OH)2 (CTAB-DP-MH) or changing the precipitating precursor (N-DP-MH), the structural, physical and morphological characteristics were tuned, and the results were compared with a commercial Mg(OH)2 sample. We identified a correlation between the TCM properties and the thermochemical behavior. In such a context, it was demonstrated that both CTAB-DP-MH and N-DP-MH improved the thermochemical performances of the storage medium concerning conversion (64 wt.% and 74 wt.% respectively) and stored and released heat (887 and 1041 kJ/kgMg(OH)2). In particular, using the innovative technique not yet investigated for thermal energy storage (TES) materials, with NaOH as precipitating precursor, N-DP-MH reached the highest stored and released heat capacity per volume unit, ~684 MJ/m3.


2017 ◽  
Vol 5 (41) ◽  
pp. 21898-21902 ◽  
Author(s):  
M. Freire ◽  
O. I. Lebedev ◽  
A. Maignan ◽  
C. Jordy ◽  
V. Pralong

Nowadays the energy storage challenge is to develop a low cost, ecofriendly, high energy density material, showing a reversible capacity higher than 250 mA h g−1.


MRS Advances ◽  
2019 ◽  
Vol 4 (15) ◽  
pp. 857-863 ◽  
Author(s):  
Qiang Wu ◽  
Jim P. Zheng ◽  
Mary Hendrickson ◽  
Edward J. Plichta

AbstractWe report a roll-to-roll dry processing for making low cost and high performance electrodes for lithium-ion batteries (LIBs). Currently, the electrodes for LIBs are made with a slurry casting procedure (wet method). The dry electrode fabrication is a three-step process including: step 1 of uniformly mixing electrode materials powders comprising an active material, a carbonaceous conductor and the soft polymer binder; step 2 of forming a free-standing, continuous electrode film by pressing the mixed powders together through the gap between two rolls of a roll-mill; and step 3 of roll-to-roll laminating the electrode film onto a substrate such as a current collector. Compared with the conventional wet slurry electrode manufacturing method, the dry manufactural procedure and infrastructure are simpler, the production cost is lower, and the process eliminates volatile organic compound emission and is more environmentally friendly, and the ability of making thick (>120µm) electrodes with high tap density results in high energy density of final energy storage device. A prototype LIBs of LiNi0.6Mn0.2Co0.2O2 (NMC622)/graphite also has 230 Wh/ kg energy density.


2022 ◽  
Vol 14 (2) ◽  
pp. 776
Author(s):  
Aditya Kachhwaha ◽  
Ghamgeen Izat Rashed ◽  
Akhil Ranjan Garg ◽  
Om Prakash Mahela ◽  
Baseem Khan ◽  
...  

The electrical energy storage system faces numerous obstacles as green energy usage rises. The demand for electric vehicles (EVs) is growing in tandem with the technological advance of EV range on a single charge. To tackle the low-range EV problem, an effective electrical energy storage device is necessary. Traditionally, electric vehicles have been powered by a single source of power, which is insufficient to handle the EV’s dynamic demand. As a result, a unique storage medium is necessary to meet the EV load characteristics of high-energy density and high-power density. This EV storage system is made up of two complementing sources: chemical batteries and ultracapacitors/supercapacitors. The benefits of using ultracapacitors in a hybrid energy storage system (HESS) to meet the low-power electric car dynamic load are explored in this study. In this paper, a HESS technique for regulating the active power of low-powered EV simulations was tested in a MATLAB/Simulink environment with various dynamic loading situations. The feature of this design, as noted from the simulation results, is that it efficiently regulates the DC link voltage of an EV with a hybrid source while putting minimal load stress on the battery, resulting in longer battery life, lower costs, and increased vehicle range.


Sign in / Sign up

Export Citation Format

Share Document