Ionic conductivity, dielectric behavior, and HATR-FTIR analysis onto poly(methyl methacrylate)-poly(vinyl chloride) binary solid polymer blend electrolytes

2012 ◽  
Vol 127 (4) ◽  
pp. 2380-2388 ◽  
Author(s):  
S. Ramesh ◽  
Chiam-Wen Liew ◽  
K. Ramesh
2018 ◽  
Vol 36 (6) ◽  
pp. 495-504 ◽  
Author(s):  
Sunil S Suresh ◽  
Smita Mohanty ◽  
Sanjay K Nayak

The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.


Polymer ◽  
1997 ◽  
Vol 38 (2) ◽  
pp. 421-429 ◽  
Author(s):  
D. Dompas ◽  
G. Groeninckx ◽  
M. Isogawa ◽  
T. Hasegawa ◽  
M. Kadokura

2012 ◽  
Vol 32 (4-5) ◽  
pp. 275-282 ◽  
Author(s):  
Azman Hassan ◽  
Noor Izyan Syazana Mohd Yusoff ◽  
Aznizam Abu Bakar

Abstract The influence of talc and poly (methyl methacrylate) (PMMA)-grafted (g)-talc on the mechanical properties of poly (vinyl chloride) (PVC) was investigated. The graft copolymerization was carried out under nitrogen atmosphere, using the free radical initiation technique. The blend formulations were first dry blended using a mixer before being milled into sheets on a two-roll mill at 165°C, and then hot pressed into composites at 190°C. The flexural modulus of both composites increased with increasing filler content from 0 to 20 part per hundred resin (phr), however the increment of grafted (57.7%) was higher than ungrafted composites (48.5%). A similar trend has also been observed for thermal stability. The impact strength of grafted was increased by 45.82%, whereas 18.96% in reduction was observed for the ungrafted composites. The decrement of flexural strength by 16.6% and 21.1% of grafted and ungrafted, respectively, has also shown the improvement in mechanical properties of grafted composites.


Sign in / Sign up

Export Citation Format

Share Document