Sulfonated polyimide/chitosan composite membrane for vanadium redox flow battery: Membrane preparation, characterization, and single cell performance

2012 ◽  
Vol 127 (5) ◽  
pp. 4150-4159 ◽  
Author(s):  
Mingzhu Yue ◽  
Yaping Zhang ◽  
Lei Wang
2017 ◽  
Vol 30 (3) ◽  
pp. 312-317 ◽  
Author(s):  
Xiaojuan Lian ◽  
Xin Yang ◽  
Hongdong Liu ◽  
Haitao Liu ◽  
Jiang Zhu

A new kind of composite membrane consisting of sulfonated poly(ether sulfone) (SPES), poly(vinylidene fluoride) (PVDF), and phosphotungstic acid (TPA) has been prepared and employed as the ion-exchange membrane for vanadium redox flow battery (VRB) application. The addition of the highly crystalline and hydrophobic PVDF effectively confines the swelling behavior of SPES/PVDF/TPA. The composite membrane exhibits one order of magnitude lower vanadium ions permeability and much better single cell performance compared to pristine SPES and Nafion 115 membranes. The single cell with SPES/PVDF/TPA membrane shows much lower capacity loss, higher coulombic efficiency (>97%), and higher energy efficiency (>82%) than which with Nafion 115 membrane. In the self-discharge test, single cell with SPES/PVDF/TPA membrane shows much longer duration in the open-circuit voltage decay than which with Nafion 115 membrane. With all the good performances and low cost, the SPES/PVDF/TPA membrane is expected to have excellent commercial prospects as ion-exchange membrane for VRB system.


2018 ◽  
Vol 31 (4) ◽  
pp. 388-393
Author(s):  
Junli Zhang ◽  
Yan Zhang ◽  
Yaobin Ma

A sulfonated poly(phthalazinone ether sulfone) (SPPES)/poly(vinylidene fluoride) (PVDF) composite membrane was prepared through a solution-casting method for vanadium redox flow battery (denoted as VRB). The composite membrane exhibits dramatically lower vanadium ions permeability and better cell performance compared to the pristine SPPES membrane and Nafion 115 membrane. The vanadium ion permeability of SPPES/PVDF membrane is one order of magnitude lower than that of Nafion 115 membrane. In the further work, the VRB single cell with SPPES/PVDF composite membrane shows higher columbic efficiency (92.80%) and energy efficiency (84.1%) at the current density 36 mA·cm−2 compared with the single cell with Nafion 115 membrane. In the self-discharge test, SPPES/PVDF membrane showed 1.7 times longer duration in the open circuit decay than Nafion 115 membrane. With all the good properties and low cost, this new kind of composite membrane is of excellent commercial prospects as an ion exchange membrane for VRB systems.


2018 ◽  
Vol 31 (6) ◽  
pp. 679-685 ◽  
Author(s):  
Yumei Xu ◽  
Wei Wei ◽  
Yanjun Cui ◽  
Huiguang Liang ◽  
Fang Nian

A novel sulfonated polyimide (SPI) membrane embedded with the phosphotungstic acid (SPI/PWA membrane) for vanadium redox flow battery (VRB) has been prepared with low capacity loss, low cost, and high energy efficiency (EE); the proportion of PWA in the composite membrane is 15%. The mechanical strength, vanadium ions permeability, and performance of the membrane in the VRB single cell were characterized. Results showed that the SPI/PWA membrane possessed low permeability of vanadium ions, accompanied by higher mechanical strength than the Nafion117 membrane. The VRB single cell with SPI/PWA composite membrane showed 7.6% higher coulombic efficiency, 4.6% higher EE, but lower capacity loss in comparison with the one with Nafion117 membrane at the current density 40 mA cm−2. The good cell performance, low capacity loss, and high vanadium ions barrier properties of the blend membrane is of significant interest for VRB applications.


Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 53
Author(s):  
Purna C. Ghimire ◽  
Arjun Bhattarai ◽  
Tuti M. Lim ◽  
Nyunt Wai ◽  
Maria Skyllas-Kazacos ◽  
...  

Progress in renewable energy production has directed interest in advanced developments of energy storage systems. The all-vanadium redox flow battery (VRFB) is one of the attractive technologies for large scale energy storage due to its design versatility and scalability, longevity, good round-trip efficiencies, stable capacity and safety. Despite these advantages, the deployment of the vanadium battery has been limited due to vanadium and cell material costs, as well as supply issues. Improving stack power density can lower the cost per kW power output and therefore, intensive research and development is currently ongoing to improve cell performance by increasing electrode activity, reducing cell resistance, improving membrane selectivity and ionic conductivity, etc. In order to evaluate the cell performance arising from this intensive R&D, numerous physical, electrochemical and chemical techniques are employed, which are mostly carried out ex situ, particularly on cell characterizations. However, this approach is unable to provide in-depth insights into the changes within the cell during operation. Therefore, in situ diagnostic tools have been developed to acquire information relating to the design, operating parameters and cell materials during VRFB operation. This paper reviews in situ diagnostic tools used to realize an in-depth insight into the VRFBs. A systematic review of the previous research in the field is presented with the advantages and limitations of each technique being discussed, along with the recommendations to guide researchers to identify the most appropriate technique for specific investigations.


Sign in / Sign up

Export Citation Format

Share Document