sulfonation degree
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 17)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Qingyong Sun ◽  
Yunhang Zeng ◽  
Ya-nan Wang ◽  
Yue Yu ◽  
Bi Shi

AbstractIt is well-known that the sulfonation degree (DS) of aromatic syntan is an important factor affecting its retanning performances. But the quantitative relation between DS and syntan property and the influencing mechanism of DS on syntan property are not clarified. In this work, five phenolic formaldehyde syntans (PFSs) with the same polymerization degree but varying DS were prepared to investigate the effect of DS on the properties of syntan and crust leather. It was found that the absolute value of zeta potential and the particle size of PFS decreased with increasing DS in aqueous solution. Molecular dynamic simulation results proved that the DS of PFS was a major contributor to electrostatic interaction and hydrogen bonding in the PFS–water system and greatly affected the aggregation and dispersion of PFS in aqueous solution. The PFS with a low DS was prone to aggregate to large particles in aqueous solution because of low intermolecular electrostatic repulsion and less hydrogen bonds and therefore can be used to increase the thickness and tightness of leather. The PFS with a high DS presented a small particle size with more anionic groups in aqueous solution, thereby sharply decreasing the positive charge of leather surface and facilitating the penetration of the post-tanning agents into the leather. These results might be scientifically valid for rational molecular design of syntans and more productive use of syntans in leather making. Graphical Abstract


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yushan Gao ◽  
Zhidan Zhang ◽  
Shuangling Zhong ◽  
Reza Daneshfar

4,4′-Dichlorodiphenylsulfone-3,3′-disulfonic acid (disodium) salt and 4,4′-difluorodiphenylsulfone were used as sulfonated monomer. 4,4′-Fluorophenyl sulfones were used as the nonsulfonated monomer. 4,4′-Dihydroxy diphenyl ether or 4,4′-thiodibenzenethiol was used as the comonomer. The sulfonated poly (aryl ether sulfone) (SPES) and sulfonated poly (arylene thioether sulfone) (SPTES) with sulfonation degree of 30% and 50% were successfully prepared by nucleophilic polycondensation. Two kinds of aromatic polymer proton exchange membranes were prepared by using sulfonated poly phthalazinone ether ketone (SPPEK) material and fluidization method. The performance of the prepared aromatic polymer proton exchange membrane was researched by the micromorphology, ion exchange capacity, water absorption and swelling rate, oxidation stability, tensile properties, and proton conductivity. Experimental results show that there is no agglomeration in the prepared aromatic polymer proton exchange membrane. The ion exchange capacity is 0.76–1.15 mmol/g. The water absorption and swelling rate increase with the increase of sulfonation degree. The sulfonated poly (aryl ether sulfone) membrane shows better oxidation stability than sulfonated poly (aryl sulfide sulfone). They have good mechanical stability. The prepared aromatic polymer proton exchange membrane with low sulfonation degree has good performance, which can be widely used in portable power equipment, electric vehicles, fixed power stations, and other new energy fields.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 277
Author(s):  
Mengyu Yan ◽  
Yunyun Lu ◽  
Na Li ◽  
Feixiang Zeng ◽  
Qinzhuo Wang ◽  
...  

Sulfonated aromatic polymer (SAP) featuring hydrophilic nanochannels for water transport is a promising membrane material for desalination. SAPs with a high sulfonation degree favor water transport but suffer from reduced mechanical strength and membrane swelling. In this work, a hyperbranched polyester, H302, was introduced to crosslink a sulfonated styrene-ethylene/butylene-styrene (S-SEBS) copolymer membrane. The effects of crosslinking temperature and amount of H302 on the microstructure, and the pervaporation desalination performance of the membrane, were investigated. H302/S-SEBS copolymer membranes with different crosslinking conditions were characterized by various techniques including FTIR, DSC, EA, SEM, TEM and SAXS, and tensile strength, water sorption and contact angle measurements. The results indicate that the introduction of hyperbranched polyester enlarged the hydrophilic microdomain of the S-SEBS membrane. Crosslinking with hyperbranched polyester with heat treatment effectively enhanced the mechanical strength of the S-SEBS membrane, with the tensile strength being increased by 140–200% and the swelling ratio reduced by 45–70%, while reasonable water flux was maintained. When treating 5 wt% hypersaline water at 65 °C, the optimized crosslinked membrane containing 15 wt% H302 and heated at 100 °C reached a water flux of 9.3 kg·m−2·h−1 and a salt rejection of 99.9%. The results indicate that the hyperbranched-S-SEBS membrane is promising for use in PV desalination.


Sign in / Sign up

Export Citation Format

Share Document