Development of thermally conductive polymer matrix composites by foaming-assisted networking of micron- and submicron-scale hexagonal boron nitride

2015 ◽  
Vol 133 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Hao Ding ◽  
Yanting Guo ◽  
Siu Ning Leung
2020 ◽  
Vol 32 (9) ◽  
pp. 1010-1018
Author(s):  
Xinggang Chen ◽  
Yafeng Wang ◽  
Zhen Chen ◽  
Lifang Zhang ◽  
Xiaoming Sang ◽  
...  

Phthalonitrile resin/exfoliated hexagonal boron nitride ( h-BN) composites with high thermal conductivity were fabricated using a novel approach. The route included two steps, micro- h-BN was coated and dispersed by phthalonitrile monomers via the function of heterogeneous nucleation, and then micro- h-BN was exfoliated by heat release during the phthalonitrile curing process. The composites achieved a high thermal conductivity of 0.736W (m·K)−1 containing 20 wt% micro- h-BN, which is 3.17 times higher than that of pure phthalonitrile resin at 0.232W (m·K)−1. Compared to traditional routes, the novel preparation approach requires less BN fillers when improving the same thermal conductivity. Importantly, other thermosetting polymers can also encapsulate BN through this strategy, which paves a new way for preparing thermally conductive thermosetting polymer–matrix composites.


Author(s):  
Jun Han ◽  
Lingyu Sun ◽  
Lijun Li ◽  
Bincheng Huang ◽  
Xudong Yang ◽  
...  

As a kind of functional materials, conductive polymer matrix composites filled with carbon nanotube (CNT) has potential application in structural health monitoring. A good formula should have a low percolation threshold and high piezoresistive strain sensitivity, which are always being sought by costly and time-consuming experimental method. Up to date, there is still a lack of numerical models to predict the sharp transition moment in electrical conductivity and mechanical resistance characteristics. This paper aims to establish a three-dimensional (3D) numerical model to observe the conductive network formation, predict the percolation threshold and investigate the piezoresistive characteristics of CNT-filled polymer matrix composites. Additionally, the influence of filler size, filler shape and filler volume fraction on the percolation threshold and piezoresistive characteristics would be investigated. The modeling and numerical simulation method can not only provide theoretical guidance for such a functional composite material, but also could be used in the future study on design and preparation of other conductive composites with two fillers added to improve the piezoresistive strain sensitivity and to decrease the percolation threshold.


Sign in / Sign up

Export Citation Format

Share Document